• Title/Summary/Keyword: Fast reactor

Search Result 492, Processing Time 0.03 seconds

Transducer analysis and signal processing of PMSF with embedded bluff body

  • Yan, Xiao-Xue;Xu, Ke-Jun;Xu, Wei;Yu, Xin-Long;Wu, Jian-Ping
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.296-307
    • /
    • 2020
  • Permanent magnet sodium flowmeter (PMSF) have been used to measure the sodium flow in fast breeder reactors. Due to the effects of irradiation, thermal cycling, time lapse, etc., the magnetic flux density of the PMSF will decrease after being used in the reactor for a period of time. Therefore, it must be calibrated regularly. But some flowmeters that immersed in sodium cannot be removed for an off-line calibration, so the on-line calibration is required. However, the best online calibration accuracy of PMSF using cross-correlation analysis method was 2.0-level without considering the repeatability. In order to further improve this work, the operational principle of the transducer in PMSF is analyzed and the design principle of the transducer is proposed. The transducers were tested on the sodium flow loop to collect the experimental data. The signal characteristics are analyzed from the time and frequency domains, respectively. The cross-correlation analysis method based on biased estimation is adopted to obtain the flow rate. The verification experimental results showed that the measurement accuracy is 1.0-level when the flow velocity is above 0.5 m/s, and the measurement accuracy is 3.0-level when the flow velocity is in the range of 0.2 m/s to 0.5 m/s.

Evaluation of Creep-Fatigue Integrity for High Temperature Pressure Vessel in a Sodium Test Loop (소듐 시험루프 내 고온 압력용기의 크리프-피로 건전성 평가)

  • Lee, Hyeong-Yeon;Lee, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.831-836
    • /
    • 2014
  • In this study, high temperature integrity evaluation on a pressure vessel of the expansion tank operating at elevated temperature of $510^{\circ}C$ in the sodium test facility of the SEFLA(Sodium Thermal-hydraulic Experiment Loop for Finned-tube Sodium-to-Air heat exchanger) to be constructed at KAERI has been performed. Evaluations of creep-fatigue damage based on a full 3D finite element analyses were conducted for the expansion tank according to the recent elevated temperature design codes of ASME Section III Subsection NH and French RCC-MRx. It was shown that the expansion tank maintains its integrity under the intended creep-fatigue loads. Quantitative code comparisons were conducted for the pressure vessel of austenitic stainless steel 316L.

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

Energy Recovery via Pyrolysis of Waste Tire Rubber : Desulfurization Effect of Pyrolysis Oil by Adding Waste Polypropylene (폐타이어의 열분해를 통한 에너지화 : 폐폴리프로필렌 첨가 시 열분해 오일의 탈황 효과)

  • Jeong, Jaeyong;Lee, Uendo;Chang, Wonseok;Oh, Munsei;Jeong, Soohwa
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, waste tire rubbers were pyrolyzed in a lab-scale pyrolysis plant equipped with a fluidized bed reactor in a temperature ranges of $450-650^{\circ}C$. The main object of this work is to investigate the properties of pyrolysis oil with reaction temperatures and the behavior of sulfur in the products when waste polypropylene was added for co-pyrolysis. The maximum yield of oil was about 52wt.% at the reaction temperature of $456^{\circ}C$. From GC-MS analysis, the pyrolysis oils consisted mainly of limonene, toluene, xylene, styrene, trimethylbenzene, methylnaphthalenes and some heteroatom(sulfur and nitrogen)-containing compounds. The addition of waste polypropylene resulted in decrease in sulfur contents of the pyrolysis oils.

THREE-DIMENSIONAL FLOW PHENOMENA IN A WIRE-WRAPPED 37-PIN FUEL BUNDLE FOR SFR

  • JEONG, JAE-HO;YOO, JIN;LEE, KWI-LIM;HA, KWI-SEOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.523-533
    • /
    • 2015
  • Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

A Fuzzy Controller for the Steam Generator Water Level Control and Its Practical Self-Tuning Based on Performance (증기발생기 수위제어를 위한 퍼지제어기 구현 및 제어성능지수를 이용한 제어기 의 Self-Tuning)

  • Na, Nan-Ju;Bien, Zeun-Gnam
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.317-326
    • /
    • 1995
  • The oater level control system of the steam generator in a pressurized water reactor and its control Problems are analysed. In this work a stable control strategy Particularly during low Power operation based on the fuzzy control method is studied. The control strategy employs substitutional information using the bypass valve opening instead of incorrectly measured signal at the low How rate as the fuzzy variable of the flow rate during low power operation, and includes the flexible scale adjusting method for fast response at a large transient. A self-tuning algorithm based on the control performance and the descent method is also suggested for tuning the membership function scale. It gives a practical way to tune the controller under real operation. Simulation was carried out on the Compact Nuclear Simulator set up at Korea Atomic Energy Research Institute and its result showed the good performance of the controller and effectiveness of its tuning.

  • PDF

Evaluation of Local Velocity Gradient and Total Mass transfer Time at Various Rotating Velocity by Using Computational Fluid Dynamics (CFD를 이용한 패들교반속도에 따른 속도경사 및 총물질전달시간 산정)

  • Jun, Hang-Bae;Tian, Dong-Jie;Hong, Ki-Won;Han, Hong-Sig;Park, Byeong-Chang
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Velocity gradient, G, a measure of the average velocity gradient in the fluid has been applied for complete mixing of chemicals in mechanical mixing devices. G values were calculated by the power input transferred to fluid in turbulent and transient range. Chemical reactions occur so fast that total mass transfer time required for even distribution of the chemicals determine the overall reaction time. The total mass transfer time is composed of the time for complete mixing through the reactor and for diffusion of the chemicals into the eddy. Complete mixing time was calculated by CFD (computer fluid dynamics) and evaluated by tracer tests in 2 liter jars at different rotating speeds. Turbulent range, Reynolds number above 10,000 in regular 2 liter jars occurred at revolution speed above 100 rpm (revolution per minute), while laminar range occurred at revolution speed below 10 rpm. A typical range of rotating speed used in jar tests for water and wastewater treatment was between 10 and 300 rpm, which covered both transient and turbulent range. G values supplied from a commercial jar test apparatus showed big difference from those calculated with power number specially in turbulent range. Diffusion time through eddy decreased 1.5 power-law of rotating speed. Complete mixing time determined by pumping number decreased increases in rotating speed. Total mass transfer time, finally, decreases as rotating speed increases, and it becomes 1 sec at rotating speed of 1,000 rpm. Complete mixing times evaluated from tracer tests showed higher than those calculated by power number at higher rotating speed. Complete mixing times, however, calculated by CFD showed similar to those of experimentally evaluated ones.

Effects of neutron irradiation on superconducting critical temperatures of in situ processed MgB2 superconductors

  • Kim, C.J.;Park, S.D.;Jun, B.H.;Kim, B.G.;Choo, K.N.;Ri, H.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • Effects of neutron irradiation on the superconducting properties of the undoped $MgB_2$ and the carbon(C)-doped $MgB_2$ bulk superconductors, prepared by an in situ reaction process using Mg and B powder, were investigated. The prepared $MgB_2$ samples were neutron-irradiated at the neutron fluence of $10^{16}-10^{18}n/cm^2$ in a Hanaro nuclear reactor of KAERI involving both fast and thermal neutron. The magnetic moment-temperature (M-T) and magnetization-magnetic field (M-H) curves before/after irradiation were obtained using magnetic property measurement system (MPMS). The superconducting critical temperature ($T_c$) and transition width were estimated from the M-T curves and critical current density ($J_c$) was estimated from the M-H curves using a Bean's critical model. The $T_cs$ of the undoped $MgB_2$ and C-doped $MgB_2$ before irradiation were 36.9-37.0 K and 36.6-36.8 K, respectively. The $T_cs$ decreased to 33.2 K and 31.6 K, respectively after irradiation at neutron fluence of $7.16{\times}10^{17}n/cm^2$, and decreased to 22.6 K and 24.0 K, respectively, at $3.13{\times}10^{18}n/cm^2$. The $J_c$ cross-over was observed at the high magnetic field of 5.2 T for the undoped $MgB_2$ irradiated at $7.16{\times}10^{17}n/cm^2$. The $T_c$ and $J_c$ variation after the neutron irradiation at various neutron fluences were explained in terms of the defect formation in the superconducting matrix by neutron irradiation.

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

Screening of Spray-Dried K2CO3-Based Solid Sorbents using Various Support Materials for CO2 Capture

  • Eom, Tae Hyoung;Lee, Joong Beom;Baek, Jeom In;Ryub, Chong Kul;Rhee, Young Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • $K_2CO_3$-based dry regenerable sorbents were prepared by spray-drying techniques to improve mass produced $K_2CO_3-Al_2O_3$ sorbents (KEP-CO2P, hereafter), and then tested for their $CO_2$ sorption capacity by a $2,000Nm^3/h$ (0.5 MWe) $CO_2$ capture pilot plant built for Unit 3 of the Hadong thermal power station in 2010. Each of the sample sorbents contained 35 wt.% $K_2CO_3$ as the active materials with various support materials such as $TiO_2$, MgO, Zeolite 13X, $Al_2O_3$, $SiO_2$ and hydrotalcite (HTC). Their physical properties and reactivity were tested to evaluate their applicability to a fluidized-bed or fast transport-bed $CO_2$ capture process. The $CO_2$ sorption capacity and percentage utilization of $K_2CO_3$-MgO based sorbent, Sorb-KM2, was $8.6g-CO_2/100g$-sorbents and 90%, respectively, along with good mechanical strength for fluidized-bed application. Sorbs-KM2 and KT were almost completely regenerated at $140^{\circ}C$. No degradation of Sorb-KM by $SO_2$ added as a pollutant in flue gas was observed during a cycle test.