• Title/Summary/Keyword: Fast motion estimation

Search Result 376, Processing Time 0.027 seconds

A Fast Motion Vector Search in Integer Pixel Unit for Variable Blocks Siz (가변 크기 블록에서 정수단위 화소 움직임 벡터의 빠른 검색)

  • 이융기;이영렬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.388-396
    • /
    • 2003
  • In this paper, a fast motion search algorithm that performs motion search for variable blocks in integer pixel unit is proposed. The proposed method is based on the successive elimination algorithm (SEA) using sum norms to find the best estimate of motion vector and obtains the best estimate of the motion vectors of blocks, including 16${\times}$8, 8${\times}$16, and 8${\times}$8, by searching eight pixels around the best motion vector of 16${\times}$16 block obtained from all candidates. And the motion vectors of blocks, including 8${\times}$4, 4${\times}$8, and 4${\times}$4, is obtained by searching eight pixels around the best motion vector of 8${\times}$8 block. The proposed motion search is applied to the H.264 encoder that performs variable blocks motion estimation (ME). In terms of computational complexity, the proposed search algorithm for motion estimation (ME) calculates motion vectors in about 23.8 times speed compared with the spiral full search without early termination and 4.6 times speed compared with the motion estimation method using hierarchical sum of absolute difference (SAD) of 4${\times}$4 blocks, while it shows 0.1dB∼0.4dB peak signal-to-noise ratio (PSNR) drop in comparison to the spiral full search.

Enhanced Cross Search algorithm using Predicted Motion Vector for Fast Block Motion Estimation

  • Ko, Byung-Kwan;Kwak, Tong-Ill;Hwang, Bo-Hyun;Yun, Jong-Ho;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.749-752
    • /
    • 2008
  • Various Motion Estimation (ME) algorithms have been proposed since ME requires large computational complexity. The proposed algorithm employs Enhanced Cross Search Pattern (ECSP) using motion vector of neighbor-blocks to search the motion vector. The experimental results show that proposed algorithm reduces the search point up to 35% compared to conventional methods.

  • PDF

Fast Multiresolution Motion Estimation in Wavelet Transform Domain Using Block Classification and HPAME (블록 분류와 반화소 단위 움직임 추정을 이용한 웨이브릿 변환 영역에서의 계층적 고속 움직임 추정 방법)

  • Gwon, Seong-Geun;Lee, Seok-Hwan;Ban, Seung-Won;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • In this paper, we proposed a fast multi-resolution motion estimation(MRME) algorithm. This algorithm exploits the half-pixel accuracy motion estimation(HPAME) for exact motion vectors in the baseband and block classification for the reduction of bit amounts and computational loads. Generally, as the motion vector in the baseband are used as initial motion vector in the high frequency subbands, it has crucial effect on quality of the motion compensated image. For this reason, we exploit HPAME in the motion estimation for the baseband. But HPAME requires additional bit and computational loads so that we use block classification for the selective motion estimation in the high frequency subbands to compensate these problems. In result, we could reduce the bit rate and computational load at the similar image quality with conventional MRME. The superiority of the proposed algorithm was confirmed by the computer simulation.

Fast Multiple Reference Frame Selection Method for Motion Estimation and Compensation in Video Coding (동영상 부호화의 움직임 추정 및 보상을 위한 고속 다중 참조 프레임 선택 기법)

  • Kim, Jae-Hoon;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1066-1072
    • /
    • 2007
  • In this paper, we propose a fast multiple reference frame selection method for motion estimation and compensation in video coding. Reference frames selected as an optimal reference frame by variable block sizes motion estimation have the statistical characteristic that was based on block size. Using the statistical characteristic, reference frames for smaller block size motion estimation can be selected from reference frame which was decided as an optimal one for the upper layer block size. Simulation results show that the proposal method decreased the computations about 60%. Nevertheless, PSNR and bit rate were almost same as the performances of original H.264 multiple reference motion estimation.

Fast Motion Estimation Algorithm via Minimum Error for Each Step (단계별 최소에러를 통한 고속 움직임 예측 알고리즘)

  • Kim, Jong Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1531-1536
    • /
    • 2016
  • In this paper, we propose a fast motion estimation algorithm which is important in performance of video encoding. Even though so many fast algorithms for motion estimation have been published due to its tremendous computational amount of for full search algorithm, efforts for reducing computations in motion estimation still remain. In the paper, we propose an algorithm that reduces unnecessary computations only, while keeping prediction quality the same as that of the full search. The proposed algorithm does not calculate block matching error for each candidate at once to find motion vectors but divides the calculation procedure into several steps and calculates partial sum of block errors. By doing that, we can estimate the minimum error point early and get the enhancement of calculation speed by reducing unnecessary computations. The proposed algorithm uses smaller computations than conventional fast search algorithms with the same prediction quality as full search.

Fast Motion Estimation Algorithm via Optimal Candidate for Each Step (단계별 최적후보를 통한 고속 움직임 예측 알고리즘)

  • Kim, Jong-Nam;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.2
    • /
    • pp.62-67
    • /
    • 2017
  • In this paper, we propose a fast motion estimation algorithm which is important in performance of video encoding. Even though so many fast algorithms for motion estimation have been published due to tremendous computational amount of full search algorithm, efforts for reducing computations of motion estimation still remain. In the paper, we propose an algorithm that reduces unnecessary computations only, while keeping prediction quality the same as that of the full search. The proposed algorithm does not calculate block matching error for each candidate directly to find motion vectors but divides the calculation procedure into several steps and calculates partial sum of block errors for candidates with high priority. By doing that, we can find the minimum error point early and get the enhancement of calculation speed by reducing unnecessary computations. The proposed algorithm uses smaller computations than conventional fast search algorithms with the same prediction quality as the full search algorithm.

  • PDF

A New Fast Motion Search Algorithm Using Motion Characteristics (움직임 특성을 이용한 새로운 고속 움직임 예측 방법)

  • 이성호;노대영;장호연;오승준;안창범
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.2
    • /
    • pp.20-28
    • /
    • 2003
  • Recently we need a faster and more accurate motion vector search algorithm for ASIC(Application Specific IC) or small systems. Block motion estimation using Full Search(FS) algorithm provides the best visual quality and PSNR, but it requires intensive computations. The previously proposed fast algorithms reduced the number of computations by limiting the number of searching locations. This is accomplished at the expense of less accuracy of motion estimation and gives rise to an appreciably higher SAD(Sum of Absolute Difference) for motion compensated images. In this paper we exploit the spatial correlation of motion vectors and present a fast motion estimation scheme which uses the predicted motion vector(PMV). The PMV scheme is more clear and simpler than the previously proposed algorithms which also use adjacent motion vectors. Simulation results with standard video sequences show that the PMV scheme is faster and more accurate than other algorithms such as Nearest-Neighbors Search(NNS) algorithm.

A New Cross and Hexagonal Search Algorithm for Fast Block Matching Motion Estimation (십자와 육각패턴을 이용한 고속 블록 정합 동작 예측 기법)

  • Park, In-Young;Nam, Hyeon-Woo;Wee, Young-Cheul;Kim, Ha-Jine
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.811-814
    • /
    • 2003
  • In this paper, we propose a fast block-matching motion estimation method using the cross pattern and the hexagonal pattern. For the block-matching motion estimation method, full search finds the best motion estimation, but it requires huge search time because it has to check every search point within the search window. The proposed method makes use of the fact that most of motion vectors lie near the center of block. The proposed method first uses the cross pattern to search near the center of block, and then uses the hexagonal pattern to search larger motion vectors. Experimental results show that our method is better than recently proposed search algorithms in terms of mean-square error performance and required search time.

Fast Warping Prediction using Bit-Pattern for Motion Estimation (비트패턴을 이용한 고속 워핑 예측)

  • 강봉구;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.390-395
    • /
    • 2001
  • In this paper, we propose a fast warping prediction using bit-pattern for motion estimation. Because of the spatial dependency between motion vectors of neighboring node points carrying motion information, the optimization of motion search requires an iterative search. The computational load stemming from the iterative search is one of the major obstacles for practical usage of warping prediction. The motion estimation in the proposed algorithm measures whether the motion content of the area is or not, using bit-pattern. Warping prediction using the motion content of the area make the procedure of motion estimation efficient by eliminating an unnecessary searching. Experimental results show that the proposed algorithm can reduce more 75% iterative search while maintaining performances as close as the conventional warping prediction.

  • PDF

Fast Block Motion Estimation Using the Characteristics of the Motion in Search Region (탐색 영역에서의 움직임 특성을 이용한 고속 블록 움직임 추정)

  • 최정현;박대규;정태연;이경환;이법기;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.167-174
    • /
    • 2000
  • The three-step search(TSS) algorithm, a simple and gradual motion estimation algorithm, has been widely used in some low bit-rate video compression. We propose a new fast block motion estimation algorithm using the characteristics of motion in search region. Most of motion vectors exist in the center region of search area, so the notion in that region is examined more closely than TSS in this paper. Also in a search step, motion vector is estimated in the local area which is not overlapped with the search area in previous step, considering the all possible direction of motion. Therefore, we get the better motion estimation and reduce computational time in compared with the conventional methods.

  • PDF