• Title/Summary/Keyword: Fast magnetic resonance imaging

Search Result 134, Processing Time 0.034 seconds

Cardiac MRI (심장 자기공명영상)

  • Lee, Jong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The obstacles for cardiac imaging are motion artifacts due to cardiac motion, respiration, and blood flow, and low signal due to small tissue volume of heart. To overcome these obstacles, fast imaging technique with ECG gating is utilized. Cardiac exam using MRI comprises of morphology, ventricular function, myocardial perfusion, metabolism, and coronary artery morphology. During cardiac morphology evaluation, double and triple inversion recovery techniques are used to depict myocardial fluidity and soft tissue structure such as fat tissue, respectively. By checking the first-pass enhancement of myocardium using contrast-enhanced fast gradient echo technique, myocardial blood flow can be evaluated. In addition, delayed imaging in 10 - 15 minutes can inform myocardial destruction such as chronic myocardial infarction. Ventricular function including regional and global wall motion can be checked by fast gradient echo cine imaging in quantitative way. MRI is acknowledged to be practical for integrated cardiac evaluation technique except coronary angiography. Especially delay imaging is the greatest merit of MRI in myocardial viability evaluation.

  • PDF

The Emerging Role of Fast MR Techniques in Traumatic Brain Injury

  • Yoo, Roh-Eul;Choi, Seung Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.76-80
    • /
    • 2021
  • Post-concussion syndrome (PCS) following mild traumatic brain injury (mTBI) is a major factor that contributes to the increased socioeconomic burden caused by TBI. Myelin loss has been implicated in the development of PCS following mTBI. Diffusion tensor imaging (DTI), a traditional imaging modality for the evaluation of axonal and myelin integrity in mTBI, has intrinsic limitations, including its lack of specificity and its time-consuming and labor-intensive post-processing analysis. More recently, various fast MR techniques based on multicomponent relaxometry (MCR), including QRAPMASTER, mcDESPOT, and MDME sequences, have been developed. These MCR-based sequences can provide myelin water fraction/myelin volume fraction, a quantitative parameter more specific to myelin, which might serve as a surrogate marker of myelin volume, in a clinically feasible time. In this review, we summarize the clinical application of the MCR-based fast MR techniques in mTBI patients.

Muscle Functional MRI of Exercise-Induced Rotator Cuff Muscles

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The aim of this study was to provide a new assessment of rotator cuff muscle activity. Eight male subjects (24.7 ± 3.2 years old,171.2 ± 9.8 cm tall, and weighing 63.8 ± 11.9 kg) performed the study exercises. The subjects performed 10 sets of the exercise while fixing the elbow at 90 degrees flexure and lying supine on a bed. One exercise set consisted of the subject performing external shoulder rotation 50 times using training equipment. Two imaging protocols were employed: (a) true fast imaging with steady precession (TrueFISP) at an acquisition time of 12 seconds and (b) multi-shot spin-echo echo-planar imaging (MSSE-EPI) at an acquisition time of 30 seconds for one echo. The main method of assessing rotator cuff muscle activity was functional T2 mapping using ultrafast imaging (fast-acquired muscle functional MRI [fast-mfMRI]). Fast-mfMRI enabled real-time imaging for the identification and evaluation of the degree of muscle activity induced by the exercise. Regions of interest were set at several places in the musculus subscapularis (sub), musculus supraspinatus (sup), musculus teres minor (ter), and deltoid muscle (del). We used the MR signal of the images and transverse relaxation time (T2) for comparison. Most of the TrueFISP signal was not changed by exercise and there was no significant difference from the resting values. Only the T2 in the musculus teres minor was increased after one set and the change were seen on the T2 images. Additionally, except for those after one and two sets, the changes in T2 were significant compared to those at rest (P < 0.01). We also demonstrated identify and visualize the extent to which muscles involved in muscle activity by exercise. In addition, we showed that muscle activity in a region such as a shoulder, which is susceptible to B0 inhomogeneity, could be easily detected using this technique.

Principles of Magnetic Resonance Angiography Techniques

  • Shin, Taehoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.209-217
    • /
    • 2021
  • Magnetic resonance angiography (MRA) plays an important role in accurate diagnosis and appropriate treatment planning for patients with arterial disease. Contrast-enhanced (CE) MRA is fast and robust, offering hemodynamic information of arterial flow, but involves the risk of a side effect called nephrogenic systemic fibrosis. Various non-contrast-enhanced (NCE) MRA techniques have been developed by utilizing the fact that arterial blood is moving fast compared to background tissues. NCE MRA is completely free of any safety issues, but has different drawbacks for various approaches. This review article describes basic principles of CE and NCE MRA techniques with a focus on how to generate angiographic image contrast from a pulse sequence perspective. Advantages, pitfalls, and key applications are also discussed for each MRA method.

Improved Reconstruction Algorithm for Spiral Scan Fast MR Imaging with DC offset Correction (DC offset을 보정한 나선 주사 초고속 자기공명영상의 재구성 알고리즘)

  • 안창범;김휴정
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 1998
  • Reconstruction aspects of spiral scan imaging for ultra fast magnetic resonance imagine(MRI) have been investigated with polar and rectangular coordinates-based reconstruction. For the reconstruction of the spiral scan imaging, acquired data in spiral trjectory should be converted to polar or rectangular grids, where interpolation techniques are used. Various reconstruction algorithms for spiral scan imaging are tested, and reconstructed image qualities are compared with computed phantom. An improved reconstruction algorithm with dc-offset correction in projection domain is proposed, which provides the best reconstructed image quality from the simulation. Image artifact with existing algorithms is completely removed with the proposed method.

  • PDF

Recent Developments in Magnetic Resonance Imaging (최근 자기공명 의료영상기기의 발전)

  • Cho, Z.H.;Ro, Y.M.;Chung, S.C.;Park, S.H.;Mun, C.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.9-15
    • /
    • 1994
  • In last few decades, medical imaging techniques have been developed startling progress. Especially in MRI (Magnetic Resonance Imaging), many imaging techniques such as chemical shift imaging, flow imaging, diffusion and perfusion imaging, fast imaging, susceptibility imaging and functional imaging have been studied and many of them were well known as useful diagnostic instruments. In this paper, recently developing techniques, i.e., NMR microscopy, fringe field imaging and functional imaging will be presented.

  • PDF

Magnetic Resonance Imaging in Thoracic Disease (흉부질환의 자기공명영상)

  • Song, Koun-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.4
    • /
    • pp.345-352
    • /
    • 1993
  • The role of magnetic resonance(MR) imaging in the evaluation of thoracic disease has been limited Nontheless, MR has inherent properties of better contrast resolution than CT allowing tissue-specific diagnosis. MR has capability of direct imaging in sagittal, coronal, and oblique planes which provide better anatomic information than axial images of CT such as lesions in the pulmonary apex, aorticopulmonary window, peridiaphragmatic region, and subcarinal region. MR is sensitive to blood flow making it an ideal imaging modality for the evaluation of cardiovascular system of the thorax without the need for intravenous contrast media. Technical developments and better control of motion artifacts have resulted in improved image quality, and clinical applications of MR imaging in thoracic diseases have been expanded. Although MR imaging is considered as a problem-solving tool in patients with equivocal CT findings, MR should be used as the primary imaging modality in the following situations: 1) Evaluation of the cardiovascular abnormalities of the thorax 2) Evaluation of the superior sulcus tumors 3) Evaluation of the chest wall invasion or mediastinal invasion by tumor 4) Evaluation of the posterior mediastinal mass, especially neurogenic tumor 5) Differentiation of fibrosis and residual or recurrent tumor, especially in lymphoma 6) Evaluation of brachial plexopathy With technical developments and fast scan capabilities, clinical indications for MR imaging in thorax will increase in the area of pulmonary parenchymal and pulmonary vascular imaging.

  • PDF