• Title/Summary/Keyword: Fast encoding

Search Result 318, Processing Time 0.035 seconds

Development of PCR Diagnosis System for Plant Quarantine Seed-borne Wheat Streak Mosaic Virus (식물검역 종자전염 Wheat Streak Mosaic Virus의 PCR 검사시스템 개발)

  • Lee, Siwon;Kang, Eun-Ha;Chu, Yeon-Mee;Shin, Yong-Gil;Ahn, Tae-Young
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Wheat streak mosaic virus (WSMV), a member of the genus Tritimovirus in Potyviridae, severely impacts wheat and corn seed worldwide, but has yet to be detected in Korea, and hence, every effort should be made to prevent its introduction. To prevent WSMV from entering the country, it is necessary to prepare a specific, sensitive, simple, and fast detection method for routine application to plant quarantine procedures. For this reason, a two-step diagnosis system consisting of RT-PCR and nested PCR is being used for WSMV detection. In addition, a novel positive control was developed for use with the system. WSMV has been detected in seed sweet corn from Japan and seed wheat from USA by a two-step diagnosis system, the details of which are described in this study. After sequence analysis, similarities of 80.6 and 100.0% with other isolates were determined by BLAST. They showed the same topology, which was classified as 4 genotypes by various phylogenetic trees, using a poly protein encoding sequence amplification. In this analysis, WSMV-JSweet-corn2868 (JX845574) is classified as clade B, while WSMV-Uwheat1944-1 (KC754959) and WSMV-Uwheat1944-2 (KC754960) belong to clade D.

Expression of SARS-3CL Protease in a Cell-Free Protein Synthesis System (무세포 단백질 합성법을 이용한 활성형 SARS-3CL protease의 발현)

  • Park, Sun-Joo;Kim, Yong-Tae
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2012
  • Severe acute respiratory syndrome (SARS) is a severe respiratory infectious disease caused by a novel human coronavirus, SARS-CoV. The 3CL protease is a key enzyme in the proteolytic processing of replicase polyprotein precursors, pp1a and pp1ab, which mediate all the functions required for viral genomic replication and transcription. Therefore, this enzyme is a target for the development of chemotherapeutic agents against SARS. A large quantity of active SARS-3CL protease is required for development of anti-SARS agents. Here we have constructed overexpression vector for the production of the SARS-3CL protease. The gene encoding SARS-3CL protease was amplified using polymerase chain reaction and cloned into the pET29a expression vector, resulting in pET29a/SARS-3CLP. Recombinant SARS-3CL protease was successfully synthesized by the dialysis mode of the cell-free protein expression system, and purified by three-step fast protein liquid chromatography using HighQ and MonoP column chromatographies and Sephacryl S-300 gel filtration. In addition, the produced SARS-3CL protease was found to be an active mature form. This study provides efficient methods not only for the development of anti-SARS materials from natural sources, but also for the study of basic properties of the SARS-3CL protease.

A Multiobjective Genetic Algorithm for Static Scheduling of Real-time Tasks (다목적 유전 알고리즘을 이용한 실시간 태스크의 정적 스케줄링 기법)

  • 오재원;김희천;우치수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.293-307
    • /
    • 2004
  • We consider the problem of scheduling tasks of a precedence constrained task graph, where each task has its execution time and deadline, onto a set of identical processors in a way that simultaneously minimizes the number of processors required and the total tardiness of tasks. Most existing approaches tend to focus on the minimization of the total tardiness of tasks. In another methods, solutions to this problem are usually computed by combining the two objectives into a simple criterion to be optimized. In this paper, the minimization is carried out using a multiobjective genetic algorithm (GA) that independently considers both criteria by using a vector-valued cost function. We present various GA components that are well suited to the problem of task scheduling, such as a non-trivial encoding strategy. a domination-based selection operator, and a heuristic crossover operator We also provide three local improvement heuristics that facilitate the fast convergence of GA's. The experimental results showed that when compared to five methods used previously, such as list-scheduling algorithms and a specific genetic algorithm, the Performance of our algorithm was comparable or better for 178 out of 180 randomly generated task graphs.

A Fast Error Concealment Using a Data Hiding Technique and a Robust Error Resilience for Video (데이터 숨김과 오류 내성 기법을 이용한 빠른 비디오 오류 은닉)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.143-150
    • /
    • 2003
  • Error concealment plays an important role in combating transmission errors. Methods of error concealment which produce better quality are generally of higher complexity, thus making some of the more sophisticated algorithms is not suitable for real-time applications. In this paper, we develop temporal and spatial error resilient video encoding and data hiding approach to facilitate the error concealment at the decoder. Block interleaving scheme is introduced to isolate erroneous blocks caused by packet losses for spatial area of error resilience. For temporal area of error resilience, data hiding is applied to the transmission of parity bits to protect motion vectors. To do error concealment quickly, a set of edge features extracted from a block is embedded imperceptibly using data hiding into the host media and transmitted to decoder. If some part of the media data is damaged during transmission, the embedded features are used for concealment of lost data at decoder. This method decreases a complexity of error concealment by reducing the estimation process of lost data from neighbor blocks. The proposed data hiding method of parity bits and block features is not influence much to the complexity of standard encoder. Experimental results show that proposed method conceals properly and effectively burst errors occurred on transmission channel like Internet.

DNA Sequence analysis and rfbM gene amplification using PCR for detect salmonella C1 serogroup (살모넬라 C1 serogroup 특이 rfbM 유전자 증폭과 염기서열 분석)

  • Lee, Sung-il;Jung, Suk-chan;Moon, Jin-san;Park, Yong-ho;Lee, John-wha;Kim, Byeong-su;Baek, Byeong-kirl
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.109-118
    • /
    • 1996
  • The Salmonella rfb gene encoding for the biosynthesis of the oligosaccharide-repeating units of the O-antigenic determinants was cloned and sequenced. A set of nucleotide primers(a forward and reverse) was selected to target a defined region of the guanosine diphospho-mannose(GDP-Man) pyrophosphorylase synthase gene : rfbM of Salmonella C serogroup. The primer set was used to develop a PCR-based rapid and specific detection system for Salmonella C1 serogroup. Amplification bands of predicted size(1,422bp) were generated from 11 different Salmonella C1 isolates. The bands were verified to be specific for the C1 serogroup by Southern blot analysis using reference homologous DNA specificity was further confirmed by the lack of reactivity with heterologous DNA derived from non-salmonella members of the family enterobacteriaeceae. A specificity of 100% was deduced along with a very high sensitivity shown by a detection limit of 1fg of a purified DNA template. The isolated DNA sequence was found to be 99.8% homologous to S montevideo but the related primers amplified with the predicted band sizes with all the Salmonella C1 serogroups tested. It is concluded that the PCR protocol based on the rfbM gene from S cholerasuis is optimal fast and specific for the detection of Salmonella C1 serogroup and also the corresponding probe is suitable for rapid detection of all Salmonella C1 serogroup DNA tested. This technology should facilitate the identification of contaminated pig products and for any other products contaminated with the Salmonalla C1 serogroup. The immediate impact of this developed method will be in the area of food safety of pig products with the potential prospect for adaptation to other food inspection technologies.

  • PDF

A Study on Motion Estimation Encoder Supporting Variable Block Size for H.264/AVC (H.264/AVC용 가변 블록 크기를 지원하는 움직임 추정 부호기의 연구)

  • Kim, Won-Sam;Sohn, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1845-1852
    • /
    • 2008
  • The key elements of inter prediction are motion estimation(ME) and motion compensation(MC). Motion estimation is to find the optimum motion vectors, not only by using a distance criteria like the SAD, but also by taking into account the resulting number of 비트s in the 비트 stream. Motion compensation is compensate for movement of blocks of current frame. Inter-prediction Encoding is always the main bottleneck in high-quality streaming applications. Therefore, in real-time streaming applications, dedicated hardware for executing Inter-prediction is required. In this paper, we studied a motion estimator(ME) for H.264/AVC. The designed motion estimator is based on 2-D systolic array and it connects processing elements for fast SAD(Sum of Absolute Difference) calculation in parallel. By providing different path for the upper and lower lesion of each reference data and adjusting the input sequence, consecutive calculation for motion estimation is executed without pipeline stall. With data reuse technique, it reduces memory access, and there is no extra delay for finding optimal partitions and motion vectors. The motion estimator supports variable-block size and takes 328 cycles for macro-block calculation. The proposed architecture is local memory-free different from paper [6] using local memory. This motion estimation encoder can be applicable to real-time video processing.

A Study on Increasing the Efficiency of Image Search Using Image Attribute in the area of content-Based Image Retrieval (내용기반 이미지 검색에 있어 이미지 속성정보를 활용한 검색 효율성 향상)

  • Mo, Yeong-Il;Lee, Cheol-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.39-48
    • /
    • 2009
  • This study reviews the limit of image search by considering on the image search methods related to content-based image retrieval and suggests a user interface for more efficient content-based image retrieval and the ways to utilize image properties. For now, most studies on image search are being performed focusing on content-based image retrieval; they try to search based on the image's colors, texture, shapes, and the overall form of the image. However, the results are not satisfactory because there are various technological limits. Accordingly, this study suggests a new retrieval system which adapts content-based image retrieval and the conventional keyword search method. This is about a way to attribute properties to images using texts and a fast way to search images by expressing the attribute of images as keywords and utilizing them to search images. Also, the study focuses on a simulation for a user interface to make query language on the Internet and a search for clothes in an online shopping mall as an application of the retrieval system based on image attribute. This study will contribute to adding a new purchase pattern in online shopping malls and to the development of the area of similar image search.

Characterization of a cDNA Encoding Transmembrane Protein 258 from a Two-spotted Cricket Gryllus bimaculatus (쌍별귀뚜라미(Gryllus bimaculatus)의 GbTmem258 cDNA 클로닝과 발현분석)

  • Kisang Kwon;Honggeun Kim;Hyewon Park;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.828-834
    • /
    • 2023
  • The cDNA that encodes transmembrane protein 258 (Tmem258) was cloned from Gryllus bimaculatus and named GbTmem258. This protein comprises 80 amino acids, has no N-glycosylation site, and contains five potential phosphorylation sites at two serines, two threonines, and one tyrosine. The predicted molecular mass of GbTmem258 is 9.06 kDa, and its theoretical isoelectric point is 5.5. The tertiary structure of GbTmem258 was predicted using the available secondary structure information, which suggests the presence of alpha helices (52.5%), random coils (22.5%), extended strands (16.25%), and beta turns (8.75%). Homology analysis revealed that GbTmem258 exhibits high similarity at the amino-acid level to Tmem258 found in other species. The effect of starvation and refeeding on GbTmem258 mRNA expression was also examined in this study. It was found that GbTmem258 mRNA expression in the hindgut progressively increased throughout the starvation period, peaking at almost 1.5 times the control level after six days of starvation. However, refeeding for one to two days after the six-day starvation period restored GbTmem258 mRNA expression to the control level. In fat body, GbTmem258 mRNA expression was almost 3-fold higher during starvation compared to the control level. Refeeding for one to two days after the six-day fast resulted in a decline in the expression to about a 2.5-fold increase over the control level. Throughout the starving and refeeding periods, no other tissues showed any discernible alterations in GbTmem258 mRNA expression.