• Title/Summary/Keyword: Fast charging

Search Result 109, Processing Time 0.039 seconds

A Development of the Electric Power Supply System for PRT Vehicle (PRT 차량의 전력 공급시스템 개발)

  • Kim, Baek-Hyun;Jeong, Rag-Gyo;Chung, Sang-Gi;Kang, Seok-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.196-200
    • /
    • 2013
  • In this paper, the design of PRT vehicle power supply system is discussed. Since there is no power feeding line facilities in PRT system under development, the PRT vehicle must have its own energy storage device on board. For the energy storage device, ultra-capacitor bank is applied due to its fast charging capability and long life time. Charging the Ultra-capacitor bank is performed by wireless inductive power transfer system. The capacitor bank is charged up in less than 10 seconds when the vehicle is traveling by passenger stations. In this paper the design of the ultra-capacitor bank and the wireless inductive power transfer system for the PRT vehicle are discussed. Tests are conducted for the both system and the result shows the efficiency of the wireless inductive power transfer system is higher than 80%.

A Novel Active Boost Power Converter for single phase SRM (단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Heeㅋ;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF

Fast iterative algorithm for calculating the critical current of second generation high temperature superconducting racetrack coils

  • Huang, Xiangyu;Huang, Zhen;Xu, Xiaoyong;Li, Wan;Jin, Zhijian
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.53-58
    • /
    • 2019
  • The critical current is one of the key parameters of high temperature superconducting (HTS) racetrack coils. Therefore, it is significant to calculate critical currents of HTS coils. This paper introduces a fast iterative algorithm for calculating the critical current of second generation (2G) HTS coils. This model does not need to solve long charging transients which greatly reduced the amount of calculation. To validate this model, the V-I curve of four 2G HTS double racetrack coils are measured. The effect of the silicon steel sheet on the critical current of the racetrack coil is also studied based on this algorithm.

Development of a 100kW charging infra for electrical bus (전기버스용 100kW급 충전인프라 개발)

  • Lee, Chung-Woo;Oh, Seung-Hun;Lee, Yun-Jae;Choi, Eun-Sik;Kang, Byung-Kwan;Ryu, Kang-Yeul;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.117-118
    • /
    • 2013
  • Recent global warming to the promotion of electric vehicles (EV), plug-in hybrid (PEV), including the next generation of cars and solar power, wind power and other renewable energy, and next-generation power grid (smart grid) are getting attention. In addition, the system utilizes the battery life in the industry and the convenience of a variety of social systems, economics, environmental impact, and the inherent potential to change significantly, and you can not walk into a next-generation industrial strategy and the need increases more and more present, and its early commercialization In order to do this, as well as a key energy source, the battery charger for charging efficiency technologies is essential. In this paper, fast charge multiple battery modules and optional modules that can charge distribution charge will be introduced.

  • PDF

Study on Generator Design for Subsequent Negative Stroke of 0.25/100 ${\mu}s$ (0.25/100 ${\mu}s$ 후속 단시간 뇌격전류 발생기 회로 기술)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1632-1633
    • /
    • 2011
  • In IEC 62305-1 standard, the simple circuit consisting of RLC is used in order to form the fast rise time of 0.25/100 ${\mu}s$. But this circuit is very expensive system because the system is needed very high charging voltage up to 3.5 MV. In this paper, we suggest the generator which generates the current up to 10 kA by using the low charging voltage of the dozen kV. Therefore the generator was installed then we compared measure results with calculated results.

  • PDF

A Study on the PSCAD/EMTDC Simulation Model of Battery Energy Storage with Simplified Battery Model and IUIa Charging Method (간략화된 배터리 모델이 적용된 IUIa 충전 방식의 에너지 저장장치의 PSCAD/EMTDC 시뮬레이션 모델에 관한 연구)

  • Kim, Sung-Hyun;Lee, Kye-Byung;Hong, Jun-Hee;Son, Kwang-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.84-90
    • /
    • 2010
  • In order to level electric power of the photovoltaic and wind-turbine system and ensure fast response of the fuel-cell and micro-turbine, the energy storage is required in the microgrid system. In this paper, a simplified simulation model of the battery energy storage for charging method with IUIa is developed using PSCAD/EMTDC. The model consists of e.m.f.(electromotive force), internal resistor and overvoltage capacitor. A method for deciding parameters of the model on a case-by-case basis is proposed. The developed model can be used in the simulation of a complicated system such as a microgrid system.

Insulation Gas to characterize the rise-time of an Utra-fast Marx generator (절연 가스에 따른 초고속 Marx generator의 상승 시간 특성)

  • Doo, Jin-Suk;Bang, Jung-Ju;Kim, Kwang-Yong;Hwang, Sun-Mook;Seo, Yu-Jin;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1396_1397
    • /
    • 2009
  • Recently, there has been considerable interest in electromagnetic pulse (EMP) source for no lethal directed energy weaponry applications. The compactness of the Marx generator, coupled with its ability to be powered by battery technology, makes it a viable handled impulse source. The marx generator has 2 stages. Each stage was constructed one charging capacitor, two electrodes and one charging resistor. A inductance structure is used in order to improve the switching performances fo the whole generator. The experiments of rise time in pure gas and mixtures of gases were described. The experimental results show that the rise time characteristics of the marx generator can be controlled through varying insulation gas.

  • PDF

A study on efficient operation method for standalone hybrid power generation (독립형 하이브리드 발전을 위한 효율적인 운영방법 연구)

  • Kim, Jae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.493-494
    • /
    • 2022
  • 본 논문에서는 독립형 하이브리드 발전을 위한 효율적안 운영방법을 제안한다. 별도의 정원이 없는 오지에서 독립적으로 동작하기 위해 태양광과 풍력 또는 소수력을 활용하여 두 가지 이상의 발전을 이용하여 발전할 수 있는 하이브리드 발전을 이용한다. 또한 발전된 전원을 야간에도 사용할 수 있도록 저장할 수 있는 배터리를 내장하여 동작할 수 있도록 한다, 배터리의 이용은 발전이 발생되는 구간과 발전이 되지 않는 구간으로 나누어 설계하였다. 발전이 이루어지는 구간은 하나의 발전과 2개의 발전으로 분리하여 하나의 발전만 이루어지는 구간은 일반적인 CC/CV(정전류/전전압) 방식을 이용하여 일반 충전을 수행하고 두 개의 발전이 동시에 이루어지는 구간은 CC(전전류) 모드를 최대한 활용하는 급속 충전을 수행한다. 본 논문에서 제안한 방법은 2개 이상의 발전을 활용하여 독립적인 기능 수행이 가능한 하이브리드 발전을 이용한 독립형 장치로서 장소와 환경의 제한이 적어 실용가능성을 나타내었다.

  • PDF

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Performance Improvement of Eco-Friendly Electrical Machine Using Fast Charging System (급속충전시스템을 이용한 친환경 전동기기의 성능 개선)

  • Kim, Sung-Hyun;An, Sang-Yong;An, Chang-Doeuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1268-1269
    • /
    • 2011
  • 본 논문에서는 친환경 전동기기의 에너지 저장장치로 널리 사용되고 있는 Lead-Acid 배터리의 특성을 나타내었고, 급속충전을 하기 위한 충전패턴을 보였다. 기존 정전류-정전압 충전패턴이 적용된 상용 제품과 당사가 개발한 급속충전기의 비교 실험을 통해 충전 시간단축을 확인하였다. 급속충전 시스템의 적용을 통해 친환경 전동기기의 성능이 개선될 수 있음을 확인하였다.

  • PDF