• Title/Summary/Keyword: Fast algorithm

Search Result 3,699, Processing Time 0.037 seconds

Input Variable Selection by Using Fixed-Point ICA and Adaptive Partition Mutual Information Estimation (고정점 알고리즘의 독립성분분석과 적응분할의 상호정보 추정에 의한 입력변수선택)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.525-530
    • /
    • 2006
  • This paper presents an efficient input variable selection method using both fixed-point independent component analysis(FP-ICA) and adaptive partition mutual information(AP-MI) estimation. FP-ICA which is based on secant method, is applied to quickly find the independence between input variables. AP-MI estimation is also applied to estimate an accurate dependence information by equally partitioning the samples of input variable for calculating the probability density function(PDF). The proposed method has been applied to 2 problems for selecting the input variables, which are the 7 artificial signals of 500 samples and the 24 environmental pollution signals of 55 samples, respectively The experimental results show that the proposed methods has a fast and accurate selection performance. The proposed method has also respectively better performance than AP-MI estimation without the FP-ICA and regular partition MI estimation.

Feature Map for Collision Detection in Motion-Based Game using Web Camera (웹 카메라를 이용한 체감형 게임의 충돌감지를 위한 특징맵)

  • Lee, Young-Jae;Lee, Dae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.620-626
    • /
    • 2008
  • We propose a feature map method to detect a collision for a motion-based game. The feature map can be made an optimally reduced motion data using subtraction image and virtual ball images according to image size and condition. And we calculate the overlapped ratio between moving image data and objects. This ratio is an invariant for detection even though image size is changed. And we compare this ration with collision detection constant, the feature map can detect fast collisions as well as the collided direction. To evaluate the method, we implemented a motion-base game that consists of a web cam, a player, an enemy, and some virtual balls, and we obtained some valid results for our method for the collision detection. The results demonstrated that the proposed approach is robust, and they can be used as a basic collide detection algorithm for a motion-based game where the size and the position of characters are continuously changing.

An Improved PCF Technique for The Generation of Shadows (그림자생성을 위한 개선된 PCF 기법)

  • Yu, Young-Jung;Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1442-1449
    • /
    • 2007
  • Shadows are important elements for realistic rendering of the 3D scene. We cannot recognize the distance of objects in the 3D scene without shadows. Two methods, image-based medthods and object-based methods, are largely used for the rendering of shadows. Object based methods can generate accurate shadow boundaries. However, it cannot be used to generate the realtime shadows because the time complexity defends on the complexity of the 3D scene. Image based methods which are techniques to generate shadows are widely used because of fast calculation time. However, this algorithm has aliasing problems. PCF is a method to solve the aliasing problem. Using PCF technique, antialiased shadow boundaries can be generated. However, PCF with large filter size requires more time to calculate antialiased shadow boundaries. This paper proposes an improved PCF technique which generates antialiased shadow boundaries similar to that of PCF. Compared with PCF, this technique can generate antialiased shadows in less time.

Improved Method for Feature Tracking Method in estimating Ocean Current Vectors from Sequential Satellite Imageries (연속 위성화상자료상의 향상된 형태추적법을 이용한 유속추정기법)

  • Kim, Eung;Ro, Young-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.199-209
    • /
    • 2000
  • This study improves the feature tracking method (FTM) in estimating the ocean current vectors from the sequential AVHRR satellite imageries by adding the objective algorithm in defining the edges and boundaries of the oceanic eddies and fronts. It was implemented by using the Sobel operator. The Sobel operator has been proved to be in effective filter in detecting the edges of any object on the image. In estimating the current vectors on the edges defined by the Sobel operator, center coordinates of the Pattern and Search tiles need to be determined by the investigator. The objective feature tracking method combined with maximum cross correlation method (MCC) is turned out to be very efficient and fast, since it uses only parts of the image containing the objects instead of searching the entire image. In the validation with the in situ ADCP measurements of currents in the East Sea, the estimated current speed values are around 35% lower than and current directions are deviated by $34^{\circ}$ from ADCP current vectors. The results are regarded as improved ones compared to the previous investigators'.

Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Zandi, Yousef;Dehghani, Davoud;Bahadori, Alireza;Shariati, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.319-332
    • /
    • 2019
  • This study is aimed to predict the behaviour of channel shear connectors in composite floor systems at different temperatures. For this purpose, a soft computing approach is adopted. Two novel intelligence methods, including an Extreme Learning Machine (ELM) and a Genetic Programming (GP), are developed. In order to generate the required data for the intelligence methods, several push-out tests were conducted on various channel connectors at different temperatures. The dimension of the channel connectors, temperature, and slip are considered as the inputs of the models, and the strength of the connector is predicted as the output. Next, the performance of the ELM and GP is evaluated by developing an Artificial Neural Network (ANN). Finally, the performance of the ELM, GP, and ANN is compared with each other. Results show that ELM is capable of achieving superior performance indices in comparison with GP and ANN in the case of load prediction. Also, it is found that ELM is not only a very fast algorithm but also a more reliable model.

H.263-Based Scalable Video Codec (H.263을 기반으로 한 확장 가능한 비디오 코덱)

  • 노경택
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.29-32
    • /
    • 2000
  • Layered video coding schemes allow the video information to be transmitted in multiple video bitstreams to achieve scalability. they are attractive in theory for two reasons. First, they naturally allow for heterogeneity in networks and receivers in terms of client processing capability and network bandwidth. Second, they correspond to optimal utilization of available bandwidth when several video qualify levels are desired. In this paper we propose a scalable video codec architectures with motion estimation, which is suitable for real-time audio and video communication over packet networks. The coding algorithm is compatible with ITU-T recommendation H.263+ and includes various techniques to reduce complexity. Fast motion estimation is Performed at the H.263-compatible base layer and used at higher layers, and perceptual macroblock skipping is performed at all layers before motion estimation. Error propagation from packet loss is avoided by Periodically rebuilding a valid Predictor in Intra mode at each layer.

  • PDF

Deep Learning-based Real-Time Super-Resolution Architecture Design (경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술)

  • Ahn, Saehyun;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2021
  • Recently, deep learning technology is widely used in various computer vision applications, such as object recognition, classification, and image generation. In particular, the deep learning-based super-resolution has been gaining significant performance improvement. Fast super-resolution convolutional neural network (FSRCNN) is a well-known model as a deep learning-based super-resolution algorithm that output image is generated by a deconvolutional layer. In this paper, we propose an FPGA-based convolutional neural networks accelerator that considers parallel computing efficiency. In addition, the proposed method proposes Optimal-FSRCNN, which is modified the structure of FSRCNN. The number of multipliers is compressed by 3.47 times compared to FSRCNN. Moreover, PSNR has similar performance to FSRCNN. We developed a real-time image processing technology that implements on FPGA.

Implementation of Neural Network Accelerator for Rendering Noise Reduction on OpenCL (OpenCL을 이용한 랜더링 노이즈 제거를 위한 뉴럴 네트워크 가속기 구현)

  • Nam, Kihun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.373-377
    • /
    • 2018
  • In this paper, we propose an implementation of a neural network accelerator for reducing the rendering noise using OpenCL. Among the rendering algorithms, we selects a ray tracing to assure a high quality graphics. Ray tracing rendering uses ray to render, less use of the ray will result in noise. Ray used more will produce a higher quality image but will take operation time longer. To reduce operation time whiles using fewer rays, Learning Base Filtering algorithm using neural network was applied. it's not always produce optimize result. In this paper, a new approach to Matrix Multiplication that is based on General Matrix Multiplication for improved performance. The development environment, we used specialized in high speed parallel processing of OpenCL. The proposed architecture was verified using Kintex UltraScale XKU6909T-2FDFG1157C FPGA board. The time it takes to calculate the parameters is about 1.12 times fast than that of Verilog-HDL structure.

Optimal Arrangement of Patrol Ships based on k-Means Clustering for Quick Response of Marine Accidents (해양사고 신속대응을 위한 k-평균 군집화 기반 경비함정 최적배치)

  • Yoo, Sang-Lok;Jung, Cho-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.775-782
    • /
    • 2017
  • The position of existing patrol ships has been decided according to subjective judgments, not purely by any reasonable or scientific criteria, because of a lack of access to marine accident positions. In this study, the optimal location of patrol ships is quantitatively determined based on historical marine accident data. The study area used included the coastal sea of Pohang in South Korea. In this study, a k-means clustering algorithm was used to derive the location of patrol ships, and then a Voronoi diagram was used to divide the region around each patrol ship. As a result, the average navigation distance for patrol ships was improved by 4.4 nautical miles, and the average arrival time was improved by 13.2 minutes per marine accident. Moreover, if the locations of patrol ships need to be changed flexibly, it will be possible to optimally arrange limited resources using the technique developed in this study to ensure a fast rescue.

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.