• Title/Summary/Keyword: Fast adaptive algorithm

Search Result 431, Processing Time 0.026 seconds

A Coding Mode Image Characteristics-based Fast Direct Mode Decision Algorithm (코딩 모드 영상 특성기반의 고속 직접모드 결정 알고리즘)

  • Choi, Yung-Ho;Han, Soo-Hee;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1199-1203
    • /
    • 2012
  • H.264 adopted many compression tools to increase image data compression efficiency such as B frame bi-directional predictions, the direct mode coding and so on. Despite its high compression efficiency, H.264 can suffer from its long coding time due to the complicated tools of H.264. To realize a high performance H.264, several fast algorithms were proposed. One of them is adaptive fast direct mode decision algorithm using mode and Lagrangian cost prediction for B frame in H.264/AVC (MLP) algorithm which can determine the direct coding mode for macroblocks without a complex mode decision process. However, in this algorithm, macroblocks not satisfying the conditions of the MLP algorithm are required to process the complex mode decision calculation, yet suffering a long coding time. To overcome the problem, this paper proposes a fast direct mode prediction algorithm. Simulation results show that the proposed algorithm can determine the direct mode coding without a complex mode decision process for 42% more macroblocks and, this algorithm can reduce coding time by up to 23%, compared with Jin's algorithm. This enables to encode B frames fast with a less quality degradation.

Fast Adaptive Parameter Estimation Algorithm using Unit Vector (단위 벡터를 이용한 고속 적응 계수 예측 알고리즘)

  • Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • This paper proposes a new QRD-LS adaptive algorithm with computational complexity of O(N). The main idea of proposed algorithm(D-QR-RLS) is based on the fact that the computation for the unit vector of is made from the process during Givens Rotation. The performance of the algorithm is evaluated through computer simulation of FIR system identification problem. As verified by simulation results, this algorithm exhibits a good performance. And, we can see the proposed algorithm converges to optimal coefficient vector theoretically.

  • PDF

Subband Affine Projection Algorithm (부밴드 인접투사 알고리즘)

  • Choi, Hun;Bae, Hyeon Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2004
  • This paper presents the subband affine projection algorithm(SAPA). The improved performance of SAPA is achieved by applying the affine projection algorithm to the subband adaptive structure. In this algorithm, the weight updating formula of adaptive filter is simply derived by using the orthogonal quadrature filter(OQF) as an analysis filter bank for subband filtering. The derived SAPA has the fast convergence speed and small computational complexity. The efficiency of the proposed algorithm for colored input signal is evaluated through some experiments.

Adaptive Coding Mode Decision Algorithm using Motion Vector Map in H.264/AVC Video Coding (H.264/AVC 부호기에서 움직임 벡터 맵을 이용한 적응적인 부호화 모드 결정 방법)

  • Kim, Tae-Jung;Ko, Man-Geun;Suh, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.48-56
    • /
    • 2009
  • We propose a fast intra mode skip decision algorithm for H.264/AVC video encoding. Although newly added MB encoding algorithms based on various prediction methods increase compression ratio, they require a significant increase in the computational complexity because we calculate rate-distortion(RD) cost for all possible MB coding modes and then choose the best one. In this paper, we propose a fast mode decision algorithm based on an adaptive motion vector map(AMVM) method for H.264/AVC video encoding to reduce the processing time for the inter frame. We verify that the proposed algorithm generates generally good performances in PSNR, bit rates, and processing time.

A Method for Expanding the Adaptive Hexagonal Search Pattern Using the Second Local Matching Point (차순위 국부 정합점을 이용한 적응형 육각 탐색의 패턴 확장 방법)

  • Kim Myoung-Ho;Lee Hyoung-Jin;Kwak No-Yoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.362-368
    • /
    • 2005
  • This paper is related to the fast block matching algorithm, especially a method for expanding the search pattern using the second local matching point in the adaptive hexagonal search. To reduce the local minima problem in fast motion estimation, the proposed method expands the search pattern by adding new searching points selected by using the second local matching point to conventional search pattern formed by the first local matching point in the adaptive hexagonal search. According to estimating the motion vector by applying block matching algorithm based on hexagonal search to the expanded search pattern, the proposed method can effectively carry out fast motion estimation to improve the performance in terms of compensated image quality.

  • PDF

Fast Motion Estimation with Adaptive Search Range Adjustment using Motion Activities of Temporal and Spatial Neighbor Blocks (시·공간적 주변 블록들의 움직임을 이용하여 적응적으로 탐색 범위 조절을 하는 고속 움직임 추정)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.372-378
    • /
    • 2010
  • This paper propose the fast motion estimation algorithm with adaptive search range adjustment using motion activities of temporal and spatial neighbor blocks. The existing fast motion estimation algorithms with adaptive search range adjustment use the maximum motion vector of all blocks in the reference frame. So these algorithms may not control a optimum search range for slow moving block in current frame. The proposed algorithm use the maximum motion vector of neighbor blocks in the reference frame to control a optimum search range for slow moving block. So the proposed algorithm can reduce computation time for motion estimation. The experiment results show that the proposed algorithm can reduce the number of search points about 15% more than Simple Dynamic Search Range(SDSR) algorithm while maintaining almost the same bit-rate and motion estimation error.

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

Simulink Model Implementation of MVDR Adaptive Beamformer for GPS Anti-Jamming

  • Han, Jeongwoo;Park, Hoon;Kim, Bokki;Han, Jin-Hee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • For the purpose of development of anti-jamming GPS receiver we have developed an anti-jamming algorithm and its Simulink implementation model. The algorithm used here is a form of Space-Time Adaptive Processing (STAP) filter which is well known as an effective way to remove wideband jamming signals. We have chosen Minimum Variance Distortionless Response (MVDR) block-adaptive beamforming algorithm for our development since it can provide relatively fast convergence speed to reach optimal weights, stable and high suppression capability on various types of jamming signals. We will show modeling results for this MVDR type adaptive beamformer and some simulation results. We also show the integrity of the demodulated satellite signals and the accuracy of resulting navigation solutions after anti-jamming operation.

An Adaptive and Fast Motion Estimation Algorithm using Initial Matching Errors (초기 매칭 에러를 통한 적응적 고속 움직임 예측 알고리즘)

  • Jeong, Tae-Il
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1439-1445
    • /
    • 2007
  • In this paper, we propose a fast motion estimation algorithm using initial matching errors by sorting square sub-blocks to find complex sub-block area adaptively based on partial calculation of SAD(sum of absolute difference) while keeping the same prediction quality compared with the PDE(partial distortion elimination) algorithm. We reduced unnecessary calculations with square sub-block adaptive matching scan based initial SAD calculation of square sub-block in each matching block. Our algorithm reduces about 45% of computations for block matching error compared with conventional PDE(partial distortion elimination) algorithm without any degradation of prediction quality, and for algorithm will be useful to real-time video coding applications using MPEG-4 AVC or MPEG-2.

  • PDF

Online structural identification by Teager Energy Operator and blind source separation

  • Ghasemi, Vida;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • This paper deals with an application of adaptive blind source separation (BSS) method, equivariant adaptive separation via independence (EASI), and Teager Energy Operator (TEO) for online identification of structural modal parameters. The aim of adaptive BSS methods is recovering a set of independent sources from their unknown linear mixtures in each step when a new sample is received. In the proposed approach, firstly, the EASI method is used to decompose structural responses into independent sources at each instance. Secondly, the TEO based demodulation method with discrete energy separation algorithm (DESA-1) is applied to each independent source, and the instantaneous frequencies and damping ratios are extracted. The DESA-1 method can provide the fast time response and has high resolution so it is suitable for online problems. This paper also compares the performance of DESA-1 algorithm with Hilbert transform (HT) method. Compared to HT method, the DESA-1 method requires smaller amounts of samples to estimate and has a smaller computational complexity and faster adaption due to instantaneous characteristic. Furthermore, due to high resolution of the DESA-1 algorithm, it is very sensitive to noise and outliers. The effectiveness of the proposed approach has been validated using synthetic examples and a benchmark structure.