• Title/Summary/Keyword: Fast Neutron

Search Result 213, Processing Time 0.023 seconds

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.

Measurement of Fast Neutron Spectrum and Flux in Central Thimble of TRIGA MARK-II Reactor

  • Kim, Dong-Hoon;Kim, Hong-Sik;Yang, Jae-Choon
    • Nuclear Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1970
  • The measurements of the fast neutron flux and its spectrum have been carried out by the threshold detectors in the central thimble of TRIGA Mark-II reactor operating at 250 KW. The following reactions have been employed for these measurements, viz : Ni$^{58}$ (n, p) Co$^{58}$$Mg^{24}$ (n, p) Na$^{24}$$Al^{27}$ (n, $\alpha$) Na$^{24}$ . From the activation data the fast neutron spectrum were calculated by CDC-3600 computer making use of two semi-empirical methods. It has been verified that the validity of assumption of a fission spectrum in the central thimble exists only above 1 to 2 Mev energy level. With this spectrum, a fast neutron flux in the range of 1 $\times$ 10$^{12}$ n/$\textrm{cm}^2$-sec above the energy of 2.6 Mev was observed in the central thimble of TRIGA MARK-II reactor.

  • PDF

A Study on the Neutron Dosimetry with LiF Thermoluminescent Dosimeters

  • Yoo, Y.S.;Kim, P.S.;Moon, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.191-198
    • /
    • 1975
  • A study was made on the neutron dosimetry in a mixed gamma-neutron field with LiF thermoluminescent dosimeter. In order to estimate the neutron dose in a mixed field, $^{6}$ LiF and $^{7}$ LiF dosimeters were used for fast and thermal neutron doses. The over-all conversion factors for the effects of dosimeter positions were derived for personnel monitoring and the glow curves of the LiF dosimeters for neutron and gamma-ray doses were also analyzed.

  • PDF

Neutron Cross Section Evaluation on Mo-95, Tc-99, Ru-101 and Rh-1()3 in the Fast Energy Region

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.533-544
    • /
    • 2002
  • The neutron induced nuclear data for Mo-95, Tc-99, Ru-101 and Rh-103 was calculated and evaluated in the fast energy region. The energy dependent optical model potential parameters were extracted based on the recent experimental data and applied up to 20 MeV. The s-wave strength function was calculated from the parameters. Spherical optical model, statistical model in equilibrium energy, multistep direct and multistep compound model in pre-equilibrium energy and direct capture model were used in the calculation. The theoretically calculated cross sections were compared with the experimental data and the evaluated files The model- calculated total and capture cross sections were in good agreement with the reference experimental data. The direct capture contribution improved the capture cross sections in pre- equilibrium region. The evaluated cross section results were compiled to ENDF-6 format and will improve the ENDF/B-Vl.

Fast Neutron Dosimetry with Two Threshold Detectors in Criticality Accidents of Nuclear Reactors

  • Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.85-95
    • /
    • 1970
  • An attempt has been made to do interpretation of the fast neutron dose with two threshold detectors incorporated with the Harwell criticality locket. This method is based on the assumption that the spectral distribution of fission neutrons in criticality accidents may be governed by one spectral parameter. The surface-absorbed dose for a unit fission neutron fluence seems to be insensitive to spectral shifts of the fission neutron spectrum. The average cross-sections for the activation detectors, however, are considerably changed with the neutron spectral shape, which may lead to a large error in calculating the dose from the reaction rate if one uses a fixed value for the average cross sections regardless of the neutron spectral distribution. Besides, the doses calculated from three representative formulae for fission neutron spectra have been compared : these formulae are Watt, Cranberg at al. and Maxwellian forms. The results obtained front the Maxwellian formula show a departure from the Watt and Cranberg's, both being similarly close.

  • PDF

저형상비 토카막 중성자원에 기반한 핵변환로 형상 연구

  • Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.414.2-414.2
    • /
    • 2016
  • The optimal configuration of a transmutation reactor based on a low aspect ratio tokamak is determined using coupled analysis of tokamak systems and neutron transport. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on a neutron multiplication, a tritium-breeding ratio, and a power density. It is shown that a breeding blanket model has an impact on the radial build of a transmutation blanket. A burn cycle has to be determined to limit a fast neutron fluence of a plasma facing material below a radiation damage limit.

  • PDF

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

Measurement of $\beta_{eff}$ in the Fast Critical Assembly BFS and Validation of a $\beta_{eff}$ Computation Code, BETA-K

  • Kim, Taek-Kyum;Kim, Young-Il;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.401-407
    • /
    • 1999
  • We have performed two experiments in the fast critical assembly BFS to measure the effective delayed neutron fraction $\beta$$_{eff}$ values and compared the results to validate the $\beta$$_{eff}$ computation code, BETA-K. Measurements of $\beta$$_{eff}$ were carried out in a metallic plutonium core and a metallic uranium core with Cf$^{252}$ source pseudo-reactivity method. Fission integrals and correction factors, which were used to obtain the experimental $\beta$$_{eff}$ values, were calculated by using the LMR core design computation code system of KAERI. BETA-K has been developed consistently with the hexagonal Nodal Expansion Method (NEM) and it used delayed neutron data of ENDF/B-VI. By comparing the computed $\beta$$_{eff}$ values with the measured ones, we found that the results from BETA-K agreed with the experimental values within the experimental error bound.ror bound.

  • PDF

Experimental Determination of Differential Fast Neutron Spectra in a Reactor using Threshold Detectors

  • Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.280-293
    • /
    • 1972
  • The differential fast neutron spectra above 0.5 Mev at particular spatial positions in tile reactor(TRIGA MARK-II) core has been determined experimentally using several threshold activation detectors. The series expansion technique utilizing the concept of least squares optimization was used to obtain an approximate solution to the set of integral equations which are defined by the experimentally determined activation data. The influence of use of different weighting functions in the solution was analyzed in each measurement. To carry out the necessary mathematical calculations, a computer code for the UNIVAC 1106 digital computer has been prepared. Good agreement was achieved between the differential fast neutron spectra determined in this work and the computed flux determined independently using space-independent multigroup transport theory.

  • PDF

A Fast Neutron Time-of-Flight Spectrometer with High Resolution

  • Cho, Mann
    • Nuclear Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.116-131
    • /
    • 1972
  • A fast neutron time-of-flight spectrometer has been constructed with suitable choice of target thickness and proton bombarding energy in Li$^{7}$ (p, n) Be$^{7}$ nuclear reaction for a continuous keV spectrum of neutrons at 0 degree in 1-nsec pulse from a Van do Graaff and a time-pick-up fast neutron detector assembled with a 5 mm-thick 92% enriched B$^{10}$ slab and four heavily shielded 4"$\times$3" NaI scintillation detectors. Energy resolution of this spectrometer is better than 0.3% at 50 keV and the signal-to-background ratio is also improved. Total cross section measurements of several separated single isotopes have been carried out with this spectrometer and analyzed by Rmaxtrix multi-level computer code. The spin values and resonance parameters of each individual resonances are given.

  • PDF