• Title/Summary/Keyword: Fast IP handover

Search Result 70, Processing Time 0.027 seconds

A Hierarchical Mobile W Architecture using a Virtual Router Layer (가상 라우터 계층을 이용한 Hierarchical Mobile IP 구조)

  • Shin Bok-Deok;Ha Kyung-Jae
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.603-614
    • /
    • 2005
  • The wireless LAN environment using Mobile IP is constructed and managed to be connected with Ethernet based wired networks. However, there have been many problems with wireless networks using Mobile IP. Some important facts on network performance have not been considered when introducing wireless LAN by Mobile IP to wired networks. In this paper, we suggest schemes which can solve problems on Handover latency caused by the asymmetrical connectivity of the Access Router at applying the HMIPv6 and on binding updates due to the MN frequent movement. Our proposed schemes can reduce network latency by using the HMIPv6 architecture with a virtual router layer, and reduce communication overhead by interchanging information of the MN movement between routers. Our schemes are expected to assist in constructing a more real and effective wireless LAN environment based on the HMIPv6 and FMIP.

IP 핸드오버 : 망기반 기법 versus 종단간 기법

  • Go, Seok-Ju
    • Information and Communications Magazine
    • /
    • v.24 no.4
    • /
    • pp.106-115
    • /
    • 2007
  • 본 고에서는 IP 핸드오버를 지원하기 위한 기존 프로토콜들을 망기반(network-based) 핸드오버 기법과 종단간(end-to-end) 핸드오버 기법으로 분류하여 비교 분석한다. 망기반 핸드오버 기법에는 FMIP (Fast handover for Mobile IP)와 NETLMM(Network-based Localized Mobility Management) 프로토콜이 있으며, 종단간 핸드오버 기법에는 SCTP 프로 토콜과 SIP 프로토콜을 활용하는 방법이 있다. 차세대 통신망에서는 다앙한 망환경 및 응용서비스가 혼재할 것으로 전망되며, 각기 특성에 따라 망기반 핸드오버 기법과 종단간 핸드오버 기법이 적용될 것으로 예상된다.

Improving the Performance of L3 Handover Mobility Management in Heterogeneous Wireless Network (이종 무선망에서 L3 핸드오버 이동성 관리 성능 향상)

  • Hong, Sung-Back;Lee, Kyeong-Ho;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.382-389
    • /
    • 2007
  • In this paper we report the development of mobility test bed, the realization of basic protocol that supports L3 mobility and the measurement of performance parameters that can affect handover performance. Previously proposed mobility management system, BBM (Break Before Make) method such as MIPV6 and Fast MIPV6, uses one interface in wireless network. In this method, to connect to new AP, it first disconnects existing AP and tries to connect to new AP. This can cause packet loss for the traffic vulnerable to delay such as VoIP. To provide seamless handover between different wireless networks, we propose MBB (Make Before Break) handover method having two network interfaces. Comparative study of previous method and proposed method on mobility and handover was conducted under simulated real environment on the test bed. Almost no packet loss was found with newly proposed method. In conclusion, it is shown that mobility protocol with proposed handover method can be applied to the application services sensitive to delay and packet loss.

Low-Latency Handover Scheme Using Exponential Smoothing Method in WiBro Networks (와이브로 망에서 지수평활법을 이용한 핸드오버 지연 단축 기법)

  • Pyo, Se-Hwan;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • Development of high-speed Internet services and the increased supply of mobile devices have become the key factor for the acceleration of ubiquitous technology. WiBro system, formed with lP backbone network, is a MBWA technology which provides high-speed multimedia service in a possibly broader coverage than Wireless LAN can offer. Wireless telecommunication environment needs not only mobility support in Layer 2 but also mobility management protocol in Layer 3 and has to minimize handover latency to provide seamless mobile services. In this paper, we propose a fast cross-layer handover scheme based on signal strength prediction in WiBro environment. The signal strength is measured at regular intervals and future value of the strength is predicted by Exponential Smoothing Method. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency is reduced. Simulation results demonstrate that the proposed scheme predicts that future signal level accurately and reduces the total handover latency.

  • PDF

LFH: Low-Cost and Fast Handoff Scheme in Proxy Mobile IPv6 Networks with Multicasting Support (프록시 모바일 IPv6 네트워크에서 멀티캐스팅을 지원하는 저비용의 빠른 이동성관리 기법)

  • Kim, Eunhwa;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.265-278
    • /
    • 2013
  • With the recent advancements in various wireless communication technologies, the importance of mobile multicasting is coming to the fore, in an effort to use network resources more efficiently. In the past, when various mobile IP-based multicast techniques were proposed, the focus was put on the costs needed for network delivery for providing multicast services, as well as on minimizing the multicast handover delay. For techniques using MIPv6 (Mobile IPv6), a host-based mobility management protocol, however, it is fundamentally difficult to resolve the problems of handover delay and tunnel convergence. To resolve these problems, a network-based mobility management protocol called PMIPv6 (Proxy Mobile IPv6) was standardized. Although performance is improved in PMIPv6 over MIPv6, it still suffers from the problems of handover delay and tunnel convergence. In this paper, to overcome these limitations, a technique called LFH (Low-cost and Fast Handoff) is proposed for fast and low-cost mobility management with multicasting support in PMIPv6 networks. To reduce the interactions between the complex multicast routing protocol and the multicast messages, a simplified proxy method called MLD (Multicast Listener Discovery) is implemented and modified. Furthermore, a TCR (Tunnel Combination and Reconstruction) algorithm was used in the multicast handover procedure within the LMA (Local Mobility Anchor) domain, as well as in the multicast handover procedure between domains, in order to overcome the problem of tunnel convergence. As a result, it was found that LFH has reduced multicast delay compared to other types of multicast techniques, and that it requires lower costs as well.

Intelligent Hierarchical Mobility Support Scheme in F-PMIPv6 Networks (F-PMIPv6 네트워크에서 지능적인 계층적 이동성 지원 기법)

  • Han, Sunghee;Jeong, Jongpil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.337-349
    • /
    • 2013
  • In this paper, we propose a new mobility management scheme, called i-FP(intelligent Fast PMIPv6). Our proposed i-FP scheme is addressed for solving the existing local mobility management problems from legacy frameworks. To move MN(Mobile Node) to other networks in one domain, i-FP employs three network entities which are extended from PMIPv6(Proxy Mobile IPv6), LMA(Local Mobility Anchor), MAG(Mobile Access Gateway) and MN. In i-FP, the three network entities can reduce the handover delay time of MNs. Also, i-FP uses an IP header swapping mechanism to avoid the traffic overhead and improve the throughput of network. To evaluate the performance of i-FP, we analyze our i-FP, HMIPv6(Hierarchical Mobile IPv6) and PMIPv6 which are legacy protocols of local mobility management in terms of various parameters. Finally, our i-FP scheme shows good performance(reduction of routing hops 10.2%, signaling costs 58.5% and handover delay 16.3%) than other network schemes for the total cost.

QoS-Guaranteed IP Mobility Management For Fast Moving Vehicles Using Multiple Tunnels (멀티 터널링을 이용한 고속 차량에서 QoS 보장 IP 이동성 관리 방법)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.44-52
    • /
    • 2011
  • In this article, we present a QoS-guaranteed IP mobility management scheme of Internet service for fast moving vehicles with multiple wireless network interfaces. The idea of the proposed mechanism consists of two things. One is that new wireless connections are established to available wireless channels whenever the measured data rate at the vehicle equipped with mobile gateway drops below to the required data rate of the user requirement. The other is that parallel distribution packet tunnels between an access router and the mobile gateway are dynamically constructed using multiple wireless network interfaces in order to guarantee the required data rate during the mobile gateway's movement. By doing these methods, the required data rate of the mobile gateway can be preserved while eliminating the possible delay and packet loss during handover operation, thus resulting in the guaranteed QoS. The architecture of the IETF standard HMIPv6 has been extended to realize the proposed scheme, and detailed algorithms for the extension of HMIPv6 has been designed. Finally, simulation has been done for performance evaluation, and the simulation results show that the proposed mechanism demonstrates guaranteed QoS during the handover with regard to the handover delay, packet loss and throughput.

An efficient handover scheme for PMIP based on IMS using PTSA (PTSA를 이용한 IMS 기반 PMIP의 효율적인 핸드오버 기법)

  • Min-Seuk Choi;Hyun-Chul Lee;Hee-Yong Youn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1340-1343
    • /
    • 2008
  • 최근 인터넷기반의 멀티미디어 서비스의 발전에 힘입어 기존의 IP망을 코어 네트워크로 사용하는 이종망간의 통합서비스가 주를 이루고 있다. 이에 따른 사용자들의 요구로 고품질 멀티미디어 데이터 서비스 지원의 QoS와 멀티미디어 서비스를 끊김없는 이동성(Seamless Mobility)에 대해서 지원할 수 있는 핸드오버기법이 필수적이게 되었다. 이중 끊김없는 이동성 지원하기 위해 MIP(Mobile IP)기법이 제안되었고, 이를 향상시킨 FMIP(Fast Handover for. MIP), HMIP(Hierarchical MIP) 그리고 PMIP(Proxy MIP)까지 제안되었다. 본 논문에서는 IMS망의 P-CSCF의 SIP프로토콜과 PMIP핸드오버 기법을 연동하는 PTSA(PMIP To SIP Agent)를 두어 IMS망에서 적용할 수 있는 향상된 PMIP 핸드오버 기법을 제안한다.

The Mechanism of Proxy Mobile IPv4 to Minimize the Latency of Handover Using MIH Services (MIH 서비스를 활용한 Proxy Mobile IPv4의 핸드오버 지연 최소화 방안)

  • Kim, Sung-Jin;You, Heung-Ryeol;Rhee, Seuck-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.211-217
    • /
    • 2008
  • Recently, there are many efforts to support seamless mobility in 802.11 WLANs using IP Layer mobility protocols. The IP layer mobility protocols are the most efficient mechanism to guarantee the service session continuity when IP subnet is changed during handover. Even if the IP layer mobility protocols are quite efficient, the feature of the protocols that had been designed to consider only L3 layer makes it difficult to improve the performance of hand over more and more. Nowadays, to overcome this limitation of IP mobility protocols, many researchers have worked on the mobility protocols integration of different layers (e.g., L2 layer). In this paper, we propose the enhanced Proxy MIPv4 to minimize the latency of handover using MIH protocol in 802.11 WLANs. The proposed mechanism minimizes the latency of authentication by exchanging security keys between Access Routers during handover. Moreover, it also minimizes packet losses by Inter-AP Tunneling and data forwarding.

  • PDF

Network Architecture and Fast Vertical Handover Scheme for UMTS-WLAN Interworking (UMTS-WLAN 간 빠른 수직적 핸드오버 제공을 위한 연동망 모델 및 핸드오버 방식)

  • Kim, In-Cheol;Lee, Sung-Kuen;Kim, Eal-Lae;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.492-501
    • /
    • 2007
  • UMTS-WLAN interworking approach can make the best use of the advantages of both networks by eliminating the stand-alone defects of the two services. For the interworking mechanisms of WLANs and UMTS networks, two major solutions have been proposed, namely loose coupling and tight coupling. The loose coupling approach provides separate data paths for WLAN and UMTS. On the other hand, the tight coupling provides a full integration of the WLAN network and the UMTS core network. The loose coupling has been preferred due to the simplicity and less reconfiguration requirement. However, loose coupling is worse in seamless mobility, QoS provision, and network security. In order to lessen the problems involved in the UMTS-WLAN interworking approaches, we propose a new interworking network architecture and a fast vertical handover scheme by employing Mobility Anchor(MA) for interworking between the two different networks. MA can enable authentication and session initialization before L2 handover of the mobile terminal, so that the seamless and fast vertical handover become possible. Thru analysis and numerical experiments, we proved that the proposed scheme has been validated.