• Title/Summary/Keyword: Fast Computation

Search Result 748, Processing Time 0.025 seconds

PDA-based Text Extraction System using Client/Server Architecture (Client/Server구조를 이용한 PDA기반의 문자 추출 시스템)

  • Park Anjin;Jung Keechul
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • Recently, a lot of researches about mobile vision using Personal Digital Assistant(PDA) has been attempted. Many CPUs for PDA are integer CPUs, which have no floating-computation component. It results in slow computation of the algorithms peformed by vision system or image processing, which have much floating-computation. In this paper, in order to resolve this weakness, we propose the Client(PDA)/server(PC) architecture which is connected to each other with a wireless LAN, and we construct the system with pipelining processing using two CPUs of the Client(PDA) and the Server(PC) in image sequence. The Client(PDA) extracts tentative text regions using Edge Density(ED). The Server(PC) uses both the Multi-1.aver Perceptron(MLP)-based texture classifier and Connected Component(CC)-based filtering for a definite text extraction based on the Client(PDA)'s tentativel99-y extracted results. The proposed method leads to not only efficient text extraction by using both the MLP and the CC, but also fast running time using Client(PDA)/server(PC) architecture with the pipelining processing.

Study on Program Partitioning and Data Protection in Computation Offloading (코드 오프로딩 환경에서 프로그램 분할과 데이터 보호에 대한 연구)

  • Lee, Eunyoung;Pak, Suehee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.377-386
    • /
    • 2020
  • Mobile cloud computing involves mobile or embedded devices as clients, and features small devices with constrained resource and low availability. Due to the fast expansion of smart phones and smart peripheral devices, researches on mobile cloud computing attract academia's interest more than ever. Computation offloading, or code offloading, enhances the performance of computation by migrating a part of computation of a mobile system to nearby cloud servers with more computational resources through wired or wireless networks. Code offloading is considered as one of the best approaches overcoming the limited resources of mobile systems. In this paper, we analyze the factors and the performance of code offloading, especially focusing on static program partitioning and data protection. We survey state-of-the-art researches on analyzed topics. We also describe directions for future research.

Dynamic swarm particle for fast motion vehicle tracking

  • Jati, Grafika;Gunawan, Alexander Agung Santoso;Jatmiko, Wisnu
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.54-66
    • /
    • 2020
  • Nowadays, the broad availability of cameras and embedded systems makes the application of computer vision very promising as a supporting technology for intelligent transportation systems, particularly in the field of vehicle tracking. Although there are several existing trackers, the limitation of using low-cost cameras, besides the relatively low processing power in embedded systems, makes most of these trackers useless. For the tracker to work under those conditions, the video frame rate must be reduced to decrease the burden on computation. However, doing this will make the vehicle seem to move faster on the observer's side. This phenomenon is called the fast motion challenge. This paper proposes a tracker called dynamic swarm particle (DSP), which solves the challenge. The term particle refers to the particle filter, while the term swarm refers to particle swarm optimization (PSO). The fundamental concept of our method is to exploit the continuity of vehicle dynamic motions by creating dynamic models based on PSO. Based on the experiments, DSP achieves a precision of 0.896 and success rate of 0.755. These results are better than those obtained by several other benchmark trackers.

A Fast Vision-based Head Tracking Method for Interactive Stereoscopic Viewing

  • Putpuek, Narongsak;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1102-1105
    • /
    • 2004
  • In this paper, the problem of a viewer's head tracking in a desktop-based interactive stereoscopic display system is considered. A fast and low-cost approach to the problem is important for such a computing environment. The system under consideration utilizes a shuttle glass for stereoscopic display. The proposed method makes use of an image taken from a single low-cost video camera. By using a simple feature extraction algorithm, the obtained points corresponding to the image of the user-worn shuttle glass are used to estimate the glass center, its local 'yaw' angle, as measured with respect to the glass center, and its global 'yaw' angle as measured with respect to the camera location. With these estimations, the stereoscopic image synthetic program utilizes those values to interactively adjust the two-view stereoscopic image pair as displayed on a computer screen. The adjustment is carried out such that the so-obtained stereoscopic picture, when viewed from a current user position, provides a close-to-real perspective and depth perception. However, because the algorithm and device used are designed for fast computation, the estimation is typically not precise enough to provide a flicker-free interactive viewing. An error concealment method is thus proposed to alleviate the problem. This concealment method should be sufficient for applications that do not require a high degree of visual realism and interaction.

  • PDF

Block Matching Motion Estimation Using Fast Search Algorithm (고속 탐색 알고리즘을 이용한 블록정합 움직임 추정)

  • 오태명
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.32-40
    • /
    • 1999
  • In this paper, we present a fast block matching motion estimation algorithm based on successive elimination algorithm (SEA). Based on the characteristic of center-biased motion vector distribution in the search area, the proposed method improves the performance of the SEA with a reduced the number of the search positions in the search area, In addition, to reduce the computational load, this method is combined with both the reduced bits mean absolute difference (RBMAD) matching criterion which can be reduced the computation complexity of pixel comparison in the block matching and pixel decimation technique which reduce the number of pixels used in block matching. Simulation results show that the proposed method provides better performance than existing fast algorithms and similar to full-search block motion estimation algorithm.

  • PDF

An Innovative Fast Relay Coordination Method to Bypass the Time Consumption of Optimization Algorithms in Relay Protection Coordination

  • Kheshti, Mostafa;Kang, Xiaoning;Jiao, Zaibin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.612-620
    • /
    • 2017
  • Relay coordination in power system is a complex problem and so far, meta-heuristic algorithms and other methods as an alternative approach may not properly deal with large scale relay coordination due to their huge time consuming computation. In some cases the relay coordination could be unachievable. As the urgency for a proper approach is essential, in this paper an innovative and simple relay coordination method is introduced that is able to be applied on optimization algorithms for relay protection coordination. The objective function equation of operating time of relays are divided into two separate functions with less constraints. As the analytical results show here, this equivalent method has a remarkable speed with high accuracy to coordinate directional relays. Two distribution systems including directional overcurrent relays are studied in DigSILENT software and the collected data are examined in MATLAB. The relay settings of this method are compared with particle swarm optimization and genetic algorithm. The analytical results show the correctness of this mathematical and practical approach. This fast coordination method has a proper velocity of convergence with low iteration that can be used in large scale systems in practice and also to provide a feasible solution for protection coordination in smart grids as online or offline protection coordination.

A New Fast Algorithm for Short Range Force Calculation (근거리 힘 계산의 새로운 고속화 방법)

  • Lee, Sang-Hwan;Ahn, Cheol-O
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.383-386
    • /
    • 2006
  • In this study, we propose a new fast algorithm for calculating short range forces in molecular dynamics, This algorithm uses a new hierarchical tree data structure which has a high adaptiveness to the particle distribution. It can divide a parent cell into k daughter cells and the tree structure is independent of the coordinate system and particle distribution. We investigated the characteristics and the performance of the tree structure according to k. For parallel computation, we used orthogonal recursive bisection method for domain decomposition to distribute particles to each processor, and the numerical experiments were performed on a 32-node Linux cluster. We compared the performance of the oct-tree and developed new algorithm according to the particle distributions, problem sizes and the number of processors. The comparison was performed sing tree-independent method and the results are independent of computing platform, parallelization, or programming language. It was found that the new algorithm can reduce computing cost for a large problem which has a short search range compared to the computational domain. But there are only small differences in wall-clock time because the proposed algorithm requires much time to construct tree structure than the oct-tree and he performance gain is small compared to the time for single time step calculation.

  • PDF

Design of a Fast Multi-Reference Frame Integer Motion Estimator for H.264/AVC

  • Byun, Juwon;Kim, Jaeseok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.430-442
    • /
    • 2013
  • This paper presents a fast multi-reference frame integer motion estimator for H.264/AVC. The proposed system uses the previously proposed fast multi-reference frame algorithm. The previously proposed algorithm executes a full search area motion estimation in reference frames 0 and 1. After that, the search areas of motion estimation in reference frames 2, 3 and 4 are minimized by a linear relationship between the motion vector and the distances from the current frame to the reference frames. For hardware implementation, the modified algorithm optimizes the search area, reduces the overlapping search area and modifies a division equation. Because the search area is reduced, the amount of computation is reduced by 58.7%. In experimental results, the modified algorithm shows an increase of bit-rate in 0.36% when compared with the five reference frame standard. The pipeline structure and the memory controller are also adopted for real-time video encoding. The proposed system is implemented using 0.13 um CMOS technology, and the gate count is 1089K with 6.50 KB of internal SRAM. It can encode a Full HD video ($1920{\times}1080P@30Hz$) in real-time at a 135 MHz clock speed with 5 reference frames.

Fast Algorithm for Intra Prediction of HEVC Using Adaptive Decision Trees

  • Zheng, Xing;Zhao, Yao;Bai, Huihui;Lin, Chunyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3286-3300
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) Standard, as the latest coding standard, introduces satisfying compression structures with respect to its predecessor Advanced Video Coding (H.264/AVC). The new coding standard can offer improved encoding performance compared with H.264/AVC. However, it also leads to enormous computational complexity that makes it considerably difficult to be implemented in real time application. In this paper, based on machine learning, a fast partitioning method is proposed, which can search for the best splitting structures for Intra-Prediction. In view of the video texture characteristics, we choose the entropy of Gray-Scale Difference Statistics (GDS) and the minimum of Sum of Absolute Transformed Difference (SATD) as two important features, which can make a balance between the computation complexity and classification performance. According to the selected features, adaptive decision trees can be built for the Coding Units (CU) with different size by offline training. Furthermore, by this way, the partition of CUs can be resolved as a binary classification problem. Experimental results have shown that the proposed algorithm can save over 34% encoding time on average, with a negligible Bjontegaard Delta (BD)-rate increase.

Optimized Integer Cosine Transform (최적화 정수형 여현 변환)

  • 이종하;김혜숙;송인준;곽훈성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1207-1214
    • /
    • 1995
  • We present an optimized integer cosine transform(OICT) as an alternative approach to the conventional discrete cosine transform(DCT), and its fast computational algorithm. In the actual implementation of the OICT, we have used the techniques similar to those of the orthogonal integer transform(OIT). The normalization factors are approximated to single one while keeping the reconstruction error at the best tolerable level. By obtaining a single normalization factor, both forward and inverse transform are performed using only the integers. However, there are so many sets of integers that are selected in the above manner, the best OICT matrix obtained through value minimizing the Hibert-Schmidt norm and achieving fast computational algorithm. Using matrix decomposing, a fast algorithm for efficient computation of the order-8 OICT is developed, which is minimized to 20 integer multiplications. This enables us to implement a high performance 2-D DCT processor by replacing the floating point operations by the integer number operations. We have also run the simulation to test the performance of the order-8 OICT with the transform efficiency, maximum reducible bits, and mean square error for the Wiener filter. When the results are compared to those of the DCT and OIT, the OICT has out-performed them all. Furthermore, when the conventional DCT coefficients are reduced to 7-bit as those of the OICT, the resulting reconstructed images were critically impaired losing the orthogonal property of the original DCT. However, the 7-bit OICT maintains a zero mean square reconstruction error.

  • PDF