• Title/Summary/Keyword: Fashion retrieval

Search Result 17, Processing Time 0.018 seconds

The Analysis of ‘Fashion’ Category Structure in the Internet Search Engines (인터넷 검색 사이트의 ‘패션’ 카테고리 구조 분석)

  • 오현남;김현주;김문숙
    • The Research Journal of the Costume Culture
    • /
    • v.9 no.3
    • /
    • pp.412-432
    • /
    • 2001
  • Internet search engines are used by the majority of find information on the Web. However, Web users can be often dissatisfied with the mistakes in the retrieval of ‘Fashion’ information from the Internet. The purpose of this study is to analyze the ‘Fashion’ category structure in the Internet search engines. There are 2 steps for achieving it: the first, to investigate the structures of ‘Fashion’ categories and then, to analyze the gap between ‘Fashion’ categories defined by them and extensive ‘Fashion’categories, which are approached on 2 sides of the fashion-life and fashion-business. We select 5 major search engines for the case study: Yahoo, Lycos, Naver, Hanmir, Empas, which ranked as top 5 of total search engines and potal sites in February, 2001, and retrieve ‘Fashion’ categories from the first level to the last level by using both “topics retrieval”. Eventually, we can find the problems of ‘Fashion’ category structure in search engines. Also, it is concluded with a brief perspective of ‘Fashion’ categories in the Internet search engines and the implications for the future.

  • PDF

An Development of Image Retrieval Model based on Image2Vec using GAN (Generative Adversarial Network를 활용한 Image2Vec기반 이미지 검색 모델 개발)

  • Jo, Jaechoon;Lee, Chanhee;Lee, Dongyub;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.301-307
    • /
    • 2018
  • The most of the IR focus on the method for searching the document, so the keyword-based IR system is not able to reflect the feature information of the image. In order to overcome these limitations, we have developed a system that can search similar images based on the vector information of images, and it can search for similar images based on sketches. The proposed system uses the GAN to up sample the sketch to the image level, convert the image to the vector through the CNN, and then retrieve the similar image using the vector space model. The model was learned using fashion image and the image retrieval system was developed. As a result, the result is showed meaningful performance.

MF sampler: Sampling method for improving the performance of a video based fashion retrieval model (MF sampler: 동영상 기반 패션 검색 모델의 성능 향상을 위한 샘플링 방법)

  • Baek, Sanghun;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.329-346
    • /
    • 2022
  • Recently, as the market for short form videos (Instagram, TikTok, YouTube) on social media has gradually increased, research using them is actively being conducted in the artificial intelligence field. A representative research field is Video to Shop, which detects fashion products in videos and searches for product images. In such a video-based artificial intelligence model, product features are extracted using convolution operations. However, due to the limitation of computational resources, extracting features using all the frames in the video is practically impossible. For this reason, existing studies have improved the model's performance by sampling only a part of the entire frame or developing a sampling method using the subject's characteristics. In the existing Video to Shop study, when sampling frames, some frames are randomly sampled or sampled at even intervals. However, this sampling method degrades the performance of the fashion product search model while sampling noise frames where the product does not exist. Therefore, this paper proposes a sampling method MF (Missing Fashion items on frame) sampler that removes noise frames and improves the performance of the search model. MF sampler has improved the problem of resource limitations by developing a keyframe mechanism. In addition, the performance of the search model is improved through noise frame removal using the noise detection model. As a result of the experiment, it was confirmed that the proposed method improves the model's performance and helps the model training to be effective.

A Sketch-based 3D Object Retrieval Approach for Augmented Reality Models Using Deep Learning

  • Ji, Myunggeun;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • Retrieving a 3D model from a 3D database and augmenting the retrieved model in the Augmented Reality system simultaneously became an issue in developing the plausible AR environments in a convenient fashion. It is considered that the sketch-based 3D object retrieval is an intuitive way for searching 3D objects based on human-drawn sketches as query. In this paper, we propose a novel deep learning based approach of retrieving a sketch-based 3D object as for an Augmented Reality Model. For this work, we introduce a new method which uses Sketch CNN, Wasserstein CNN and Wasserstein center loss for retrieving a sketch-based 3D object. Especially, Wasserstein center loss is used for learning the center of each object category and reducing the Wasserstein distance between center and features of the same category. The proposed 3D object retrieval and augmentation consist of three major steps as follows. Firstly, Wasserstein CNN extracts 2D images taken from various directions of 3D object using CNN, and extracts features of 3D data by computing the Wasserstein barycenters of features of each image. Secondly, the features of the sketch are extracted using a separate Sketch CNN. Finally, we adopt sketch-based object matching method to localize the natural marker of the images to register a 3D virtual object in AR system. Using the detected marker, the retrieved 3D virtual object is augmented in AR system automatically. By the experiments, we prove that the proposed method is efficiency for retrieving and augmenting objects.

PoMP : Power conscious Multimedia Player (저전력 멀티미디어 재생 기법)

  • Park, Jung-Wan;Won, You-Jip
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.253-255
    • /
    • 2003
  • Electricity is the prime commodity in mobile device, e.g. smart phone, PDA, MP3 player and etc. This strict restriction on power consumption requirement of the mobile device puts unique demand in designing hardware and software components of the device. In this paper, we address the issue of minimizing the power consumption in retrieving the continuous media data from the disk drive for real-time playback purpose. Different from the legacy text based data, real-time multimedia playback requires that the storage supplies the data block continuous fashion. This may put immense burden on the power scarce environment since the disk Is required to be active for the entire playback duration. We develop elaborate algorithm which carefully analyzes the power consumption profile of the disk drive and which establishes the data retrieval schedule for the given playback. It computes the amount of data blocks to read, the length of active and standby period. According to our simulation result, the ARM algorithm exhibits superior performance in continuous media retrieval from the aspect of power consumption to legacy playback scheme.

  • PDF

A study on online WOM search behavior based on shopping orientation (의복쇼핑성향에 따른 온라인 구전 정보탐색행동에 관한 연구)

  • Lee, Angie;Rhee, YoungJu
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.57-71
    • /
    • 2018
  • Since consumers have become more comfortable with providing and receiving information online, 'online word of mouth' has been gaining consideration as one of the major information sources. Also, the shopping orientation of consumers has been proven to be an important determinant of consumer behavior. Therefore, the study investigated the differences in online WOM behavior based on shopping orientation. Hedonic, loyal, and syntonic styles were the types of shopping orientation considered, and the study focused on information retrieval tendencies, the motivation of online WOM search, searching online WOM sources, and the contents for the online WOM behavior. The research conducted an off-line survey targeting females in their twenties. The total number of data sets used in the empirical study was 125, and these were analyzed by SPSS 20.0: factors analysis, Cronbach's ${\alpha}$, k-means cluster, ANOVA, Duncan's multiple range test, Kruskal-Wallis, Mann-Whitney, and Bonferroni correction. The participants were divided into 3 kinds of shopping orientation groups named 'trend-pursuit', 'passive', and 'loyal'. As a result, there were significant differences in online WOM behavior discovered between the groups. Firstly, the 'trend-pursuit' group had the highest number of ongoing searches while the 'loyal' group had the highest number of pre-purchase search. Secondly, the 'trend-pursuit' and 'loyal' groups both had the motivations of online WOM search, hedonic and utility, whereas the 'passive' group had the lowest motivations for both motivations. Thirdly, the 'loyal' group frequently referred to reviews on shopping malls as online WOM sources. The research provided a better understanding of the online WOM behavior of present consumers and suggests that fashion related corporations map out marketing strategies with the understanding of these behaviors.

Implementation of CNN-based Classification Training Model for Unstructured Fashion Image Retrieval using Preprocessing with MASK R-CNN (비정형 패션 이미지 검색을 위한 MASK R-CNN 선형처리 기반 CNN 분류 학습모델 구현)

  • Seunga, Cho;Hayoung, Lee;Hyelim, Jang;Kyuri, Kim;Hyeon-Ji, Lee;Bong-Ki, Son;Jaeho, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • In this paper, we propose a detailed component image classification algorithm by fashion item for unstructured data retrieval in the fashion field. Due to the COVID-19 environment, AI-based online shopping malls are increasing recently. However, there is a limit to accurate unstructured data search with existing keyword search and personalized style recommendations based on user surfing behavior. In this study, pre-processing using Mask R-CNN was conducted using images crawled from online shopping sites and then classified components for each fashion item through CNN. We obtain the accuaracy for collar of the shirt's as 93.28%, the pattern of the shirt as 98.10%, the 3 classese fit of the jeans as 91.73%, And, we further obtained one for the 4 classes fit of jeans as 81.59% and the color of the jeans as 93.91%. At the results for the decorated items, we also obtained the accuract of the washing of the jeans as 91.20% and the demage of jeans accuaracy as 92.96%.

Building Intelligent User Interface Agent for Semantically Reformulating User Query in Medicine

  • Lim, Chae-Myung;Chu, Sung-Joon;Lee, Dong-Hoon;Park, Duck-Whan;Park, Tae-Young;Yang, Jung-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.57-64
    • /
    • 2003
  • Achieving the beneficiary goal of recent discovery in human genome project still needs a way to retrieve and analyze the exponentially expanding bio-related information. Research on bio-related fields naturally applies knowledge discovered to the current problem and make inferences to extract new information where shared concepts and data containing information need to be defined and used in a coherent way. In such a professional domain, while the need to help users reduce their work and to improve search results has been emerged. methods for systematic retrieval and adequate exchange of relevant information are still in their infancy. The design of our system aims at improving the quality of information retrieval in a professional domain by utilizing both corpus-based and concept-based ontology. Meta-rules of helping users to make an adequate query are formed into an ontology in the domain. The integration of those knowledge permits the system to retrieve relevant information in a more semantic and systematic fashion. This work mainly describes the query models with details of GUI and a secondary query generation of the system.

  • PDF

The moderating effect of Korean fashion SMEs' company age and size on the relationship between management ownership and company financial growth (패션기업의 경영자 기업지배력이 기업 재무성장성에 미치는 영향 - 한국 중소기업의 규모와 기업업력의 조절효과를 중심으로 -)

  • Yoon, Namhee;Kim, Ji-Yeon
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.2
    • /
    • pp.248-262
    • /
    • 2016
  • Most Korean companies in the fashion industry are SMEs, and the role of the CEO and management ownership is important for enhancing the firm's competence and developing strategies. The study aims to examine the effect of management ownership on company financial growth. In particular, the study focuses on the moderating effect of company age and size on Korean fashion SMEs' financial outcomes. Financial data based on company financial statements from 2012 to 2014 was collected by the Data Analysis, Retrieval and Transfer System of Korea's Financial Supervisory Service. A total of 295 companies' (domestic fashion businesses) data was analyzed by the bootstrap method. The median sales value in the financial year 2014 was 47,492,403,958 KRW, and the company size was divided by it. The companies were in business for an average of 20 years. According to the results, the management ownership had a negative effect on Compound Annual Growth Rate (CAGR) for the three-years, and the relationship between the two variables was moderated by company age. Additionally, the interaction effect of management ownership and company age on 3-CAGR was also moderated by company size. When the companies had spent only a few years in business, a negative effect of management ownership for small firms and a positive effect of management ownership on financial growth for medium firms were found. These results suggest that small companies starting business need to manage their company governance structure to make flexible decisions, and after retaining financial growth, the companies can expand their businesses based on strong ownership.

GLIBP: Gradual Locality Integration of Binary Patterns for Scene Images Retrieval

  • Bougueroua, Salah;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.469-486
    • /
    • 2018
  • We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.