• Title/Summary/Keyword: Farms development

Search Result 696, Processing Time 0.028 seconds

Prospective for Successful IT in Agriculture (일본 농업분야 정보기술활용 성공사례와 전망)

  • Seishi Ninomiya;Byong-Lyol Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 2004
  • If doubtlessly contributes much to agriculture and rural development. The roles can be summarized as; 1. to activate rural areas and to provide more comfortable and safe rural life with equivalent services to those in urban areas, facilitating distance education, tole-medicine, remote public services, remote entertainment etc. 2. To initiate new agricultural and rural business such as e-commerce, real estate business for satellite officies, rural tourism and virtual corporation of small-scale farms. 3. To support policy-making and evaluation on optimal farm production, disaster management, effective agro-environmental resource management etc., providing tools such as GIS. 4. To improve farm management and farming technologies by efficient farm management, risk management, effective information or knowledge transfer etc., realizing competitive and sustainable farming with safe products. 5. To provide systems and tools to secure food traceability and reliability that has been an emerging issue concerning farm products since serious contamination such as BSE and chicken flu was detected. 6. To take an important and key role for industrialization of farming or lam business enterprise, combining the above roles.

A Study on the Regionality of Land-Lease Farming : A Comparative Analysis of the Case Study Areas (임차농(賃借農)의 지역성(地域性)에 관한 연구 -사례지역의 비교분석-)

  • Suh, Chan-Ki
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.121-150
    • /
    • 1997
  • This Study puts the purpose to explicate the regionalities of land-lease farming by a comparative analisis of the five case study areas in Kungpook Province as the agricultural space system of Teagu metropolitan city. For the regional comparative analysis the province was divided into the three zones with the distance from the central city(Teagu): urban fringes, intermediate and remote zone, and then subdivided into the five regions by farming systems : horticulture, rice-farming, and dry-field farming. The data were collected from 77 land-leasing farmers by questionnaire and interview with farm managers in 5 sample villages representing the regionalities of the above five regions respectively. In spite of relatively restricted scope of the research areas, the analytical results appear remarkable regional differences in the characteristics of land-lease farming within a single agricultural space system. In the final analysis the regionalities of the five land-lease farming regions could be described respectively as follows. (1) Koryong-Gun in the inner urban fringe zone : The developing land-lease farming region of commercialized suburban horticulture with medium scale. (2) Songju-Gun in the outer urban fringe zone : The developing land-lease farming region of highly commercialized horticulture with large scale. (3) Uisong-Gun in the intermediate zone : The stagnated land-lease farming region of commercialized rice-farming with large scale. (4) Yongil-Gun in the intermediate zone : The stagnated land-lease farming region of commercializing dry-field farming with medium scale. (5) Ponghwa-Gun in the remote zone : The stagnated and delayed region in commercializing of intermountain dry-field land-lease farming with small scale. These varied regionalities resulted from the diverse spatiality as a complex of spatial orders and localities. The spatial orders in this study are frequently recognizable as a form of distance-decay, and the locality of a region is determined mostly by the its peculiarity of physical and population conditions. In the comparative analysis of the regionalities the degree of commercialization of a region is a most comprehensive and useful frame of reference because it reflects the degree of development of capitalist land-lease farming. Finally these apparent regional differentiations of land-lease farming within a agricultural space system raise the problem of impracticality of the existing uniform logic on the land-lease farming such as "large scale farms share larger part of leased farmland." This problem suggests the urgent need of reappraisal of many aspatial logics and theories on the land-lease farming.

  • PDF

Characteristics and Possible Early Harvesting Time of Early Maturing Soybean Cultivars in Southern Korea (남부지방에서 조생종 콩 품종의 특성과 조기수확 한계기)

  • Kim, Dong-Kwan;Son, Dong-Mo;Chon, Sang-Uk;Lee, Kyung-Dong;Kim, Kyong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • This study analyzed the growth, seed quality, and yield of major early-maturing soybean cultivars by comparing them in order to utilize the research results in the selection of early-maturing soybean cultivars in multi-cropping farms in the Southern area. This field trial was conducted at Naju region (latitude $35^{\circ}04'N$, longitude $126^{\circ}54'E$), Jeonnam, with planting on June 15. The maturing date for Keunol-kong and Hwaseong-put-kong was found to be around September 12, which was earlier than other cultivars. Thus, there were advantages to introducing a cropping system as well as having good seed quality and high yield. On the other hand, the maturing date for Saeol-kong and Sinrok-kong was found to be around September 20, which was a little bit late; however, the seed quality of the cultivars was good and they had a high yield. Therefore, if we want to sow the following crops of soybeans around mid-September, Keunol-kong and Hwaseong-put-kong are advantageous, while for the seeding around late September, Saeol-kong and Sinrok-kong would be good. This study was also performed to identify the limitation time for early harvesting by reviewing seed quality and yield of major early-maturing soybean cultivars according to early harvesting. When harvesting Keunol-kong on September 6, which was six days earlier than the optimal harvesting time (September 12), there was no difference in seed weight, yield, or seed quality than those of the harvested at the optimum maturing time. As for Saeol-kong, when harvesting on September 18, which was six days earlier than the optimal harvesting time (September 24), there was no difference in seed weight, yield, or seed quality than those of the harvested at the optimum maturing time. Therefore, the stable limitation time for early harvesting of Keunol-kong and Saeol-kong was concluded to be six days earlier than the optimal harvesting time.

The Survey of Total Mixed Ration Plant in Korea (국내 TMR 배합소에 대한 실태조사)

  • Ki, Kwang-Seok;Lee, Wang-Shik;Lee, Hyun-June;Kim, Sang-Bum;Baek, Kwang-Soo;Lim, Keun-Bal;Cho, Won-Mo;Kim, Hyeon-Shup;Jeong, Ha-Yeon;Jeo, Joon-Mo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • This experiment was carried out to show a reform measures by grouping for problems by the survey of TMR plants. Twenty total mixed ration (TMR) plants (10 cooperation and 10 private plants) were surveyed, of which 13 plants, 65% of total TMR plants, committed TMR formulae to a outside nutrition specialist (TMR formulator). With respect to consulting fee for TMR formulae, $500{\sim}900$ thousands Won was paid monthly. On the basis of dry matter 1kg, the prices of TMR products were $325.6{\sim}347.0$Won, whereas those of wet TMR products $365.7{\sim}375.0$Won, which was appeared to be factors to increase management cost. And also, because the TMR plants did not provide TDN (total digestible nutrient) value on their products, nutritional balance feeding for cows could not be managed in farms. It was calculated, based on ADF (acid detergent fiber) value, that TDN value in dry type TMR was 63.0% and 73.2% fur private and cooperation TMR plants, respectively and that the corresponding figure in wet type TMR was 64.9% and 67.2%. According to TMR plant employee's opinion, a prier items to enlarge TMR utilization were TMR education, TMR advertisement, and improvement of ability to make TMR formula. Therefore, for the purpose of further development of TMR, special education of persons related to TMR should be supported.

Potential use of Bacillus amyloliquefaciens as a probiotic bacterium in abalone culture (북방전복, Haliotis discus hannai 에 대한 Bacillus amyloliquefaciens의 probiotic 효과)

  • Park, Jin Yeong;Kim, Wi-Sik;Kim, Heung Yun;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • In comparison to the numbers of such studies of fish, few studies have been carried out on the immunity, physiology and ecology of abalone, while studies on abalone disease are also extremely rare. Moreover, mass mortality of cultured abalone due to pathogenic bacteria has not been reported in the southern coast of Korea. However, Vibrio-like bacteria have been isolated from dead abalone, which indicates that a review is required in order to determine the cause of abalone mortality. Use of an antimicrobial agent to minimize the damage caused by disease in abalone farms is common, but the therapeutic effects are insignificant. Demand for probiotics has increased, but research on the development of probiotics for use in abalone culture is very rare. Therefore, the present study isolated KC16-2 from fermented kimchi soup and investigated the characteristics of the isolate as a candidate probiotic bacterium in abalone. KC16-2 was identified as Bacillus amyloliquefaciens (B. amyloliquefaciens KC16-2) based on its biochemical properties and 16S rRNA gene sequence. B. amyloliquefaciens KC16-2 showed inhibitory effects against the growth of various vibrios in vitro, and kept the numbers constant until four days after inoculation in marine water at a temperature of $15{\sim}25^{\circ}C$, indicating the possible use of KC16-2 as a probiotic, except in the winter. The growth of KC16-2 was inhibited by bile salt, but the numbers increased over time suggesting the bacteria were still alive in the abalone's digestive tract. Abalone fed with a diet including KC16-2 for 12 weeks showed good growth, but showed no significant differences from the control group. However, the mortality of the abalone supplied the probiotic diet was reduced to half that of the control group in a challenge test with Vibrio tubiashii. Therefore, we suggest that B. amyloliquefaciens KC16-2 could be used as a probiotic bacterium for control of the mortality of abalone caused by opportunistic pathogenic vibrios.

Socio-Economic Differentials along the Ethnic Line among Coffee Farms in Central Highland, Vietnam (베트남 중부고원지대 커피농가의 사회경제적 격차: 민족성의 영향을 중심으로)

  • Chung, Su-Yeul;Lee, Sung-Cheol;Joh, Young Kug
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.360-377
    • /
    • 2016
  • Since after the 1986 economic reform policy(Doi Moi), the central highland in Vietnam has transformed into one of the largest coffee producing areas. The transformation had been supported by mass migration of ethnic Kinhs from the coastal lowland. It did not take long for the Kinh migrants to be the ethnic majority in the region. Meanwhile the growth of coffee industry entailed in socio-economic disparity, specially between Kinh migrants and native ethnic minorities. The disparity has becomed obvious not only between coffee farming Kinhs and non-coffee farming ethnic minorities but also between coffee farming Kinhs and ehtnic minorities. The previous literatures highlight the lack of human and social capital and the lagging modernization in ethnic minority societies. However, they fall short in showing the explicit processes why ethnic minority coffee farmers earn less than ethnic majority counterparts. With a case study of Dak Lak province, this research attempts to show the reason why there is income gap between Kinh and ethnic minority Ede coffee farmers by comparing their ways of producing coffee and selling their products. The results show that Ede's land productivity is significantly lower than Kinh's. It is because Ede farmers use less fertilizer due to the shortage of the capital. Also they often get into debt for coffee production and should pay it back right after the harvest. It deprives them of chance to raise earning by selling the coffee beans at a higher price.

  • PDF

A Study on Analysis of Investment Effects of Farm Mechanization, Korea -Mainly on the Case Study of Saemaeul Farm Mechanization Groups in Nonsan Area, Chungnam Province- (농업기계화(農業機械化)의 투자효과분석(投資效果分析)에 관(關)한 연구(硏究) -충남논산지역(忠南論山地域) 새마을 기계화영농단(機械化營農團)을 중심(中心)으로-)

  • Lim, Jae Hwan;Han, Gwan Soon
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.164-185
    • /
    • 1987
  • The Korean economy has been developed rapidly in the course of implementing the five year economic development plans since 1962. Accordingly the industrial and employment structure have been changed from the traditional agriculture to modem industrial economy. In the course of implementing export oriented industrialization policies, rural farm economy has been encountered labour shortage owing to rural farm population drain to urban areas, rural wage hike and pressure on farm operation costs, and possibility of farm productivity decrease. To cope with the above problems the Korean government has supplied farm machinery such as power tillers, tractors, transplanters, binders, combines, dryers and etc. by means of the favorable credit support and subsidies. The main objectives of this study are to identify the investment effects of farm mechanization such as B/C and Internal Rate of Return by machinery and operation patterns, changes of labour requirement per 10a for rice culture since 1965, partial farm budget of rice with and without mechanization, and estimation labour input with full mechanization. To achieve the objectives Saemaeul farm mechanization groups, common ownership and operation, and farms with private ownership and operation were surveyed mainly in Nonsan granary area, Chungnam province. The results of this study are as follows 1. The national average of labor input per 10a of paddy has decreased from 150.1Hr in 1965 to 87.2Hr in 1985 which showes 42% decrease of labour inputs. On the other hand the hours of labour input in Nonsan area have also decreased from 150.1Hr to 92.8Hr, 38% of that in 1965, during the same periods. 2. The possible labor saving hours per 10a of Paddy was estimated at 60 hours by substituting machine power for labor forces in the works of plowing, puddling, transplanting, harvesting and threshing, transporting and drying The labor savings were derived from 92.8 hours in 1986 deducting 30 hours of labor input with full mechanization in Nonsan area. 3. Social benefits of farm mechanization were estimated at 124,734won/10a including increment of rice (10%): 34,064won,labour saving: 65,800won,savings of conventional farm implements: 18,000 won and savings of animal power: 6,870won. 4. Rental charges by works prevailing in the area were 12,000won for land preparation, 15,000won for transplanting with seedlings, 19,500won for combine works and 6,000won for drying paddy. 5. Farm income per 10a of paddy with and without mechanization were amounted to 247,278won and 224,768won respectively. 6. Social rate of return of the machinery were estimated at more than 50% in all operation patterns. On the other hand internal rate of return of the machinery except tractors were also more than 50% but IRR of tractors by operation patterns were equivalent to 0 to 9%. From the view point of farmers financial status, private owner-operation of tractors is considered uneconomical. Tractor operation by Saemaeul mechanization groups would be economical considering the government subsidy, 40% of tractor price. 7. Farmers recommendations for the government that gained through field operation of farm machinery are to train maintenance technology for rural youth, to standardize the necessary parts of machinery, to implement price tag system, to intercede spare parts and provide marketing information to farmers by rural institutions as RDA,NACF,GUN office and FLIA.

  • PDF

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.