• Title/Summary/Keyword: Farming technology

Search Result 673, Processing Time 0.034 seconds

Affect of Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost on Damage of Red Pepper Cultivation (제약업종 부산물 및 화장품 제조업 폐수처리오니의 고추 비해에 미치는 영향)

  • Lim, Dong-Kyu;Lee, Sang-Beom;Kwon, Soon-Ik;Lee, Seung-Hwan;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • Three sludge types from pharmaceutical byproducts and one sludge type from cosmetic waste-water sludge as raw materials of compost were used in a field based concrete pot ($4\;m^2$, $2\;m{\times}2\;m$) for investigating damage of red pepper cultivation. These sludges and pig manure (1 Mg/10a, dry basis) were incorporated into the upper of clay loam soil prior to transplanting with red pepper. Changes in concentration and properties of heavy metal for both of soil and plant were investigated 4 times during of red pepper growth. Plant height and stem diameter of red pepper in sludge treatments except to Pharmaceutical sludge 3 were poor than those of NPK treatment. This result were regarded as an effect of incompleted decomposition sludge which has a lot of organic matter concentration. Amount of total As was increased rapidly Jul. 8. in soil, total Zn Cu Pb Cd were in harvest time, and 1 N-HCl extractable Zn Cu Pb Cd As were in harvest at middle stage and then decreased. Amounts of nitrogen in plant (leaf and stem) were high in Phamaceutical Sludge 1 and fig Manure treatment in early and middle stage because of organic matter and nitrogen concentrations and characteristics. Amounts of Zn, Pb, and Ni in leaf and amount of Zn and Pb in stem were increased in harvest time so that we need to have a concern in detail. Total yield of red pepper was Pig Manure > Phamaceutical Sludge 3 > Phamaceutical Sludge 1 > NPK > Phamaceutical Sludge 2 and Cosmetic Sludge treatment was decreased considerably to compare to others. Amounts of Zn and Cu in green and red pepper in harvest time were higher than the other heavy metals. Finally these results can use to utilize that finding damage on crop for authorization and suitability estimation of raw material of compost.

Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea (중부지역 과수원 토양중의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • Objectives of this study were to monitor the distribution of heavy metals, to compare extractable heavy metal with total content and to investigate the relationships between soil physico-chemical properties and heavy metals in orchard soil. Sampling sites were 48 in Gyeonggi, 36 in Gangwon, 36 in Chungbuk, and 44 in Chungnam, Soils were collected farm form two depths, 0 to 20 and 20 to 40 cm (here after referred to as upper and lower layers) from March to May in 1998. Total contents of heavy metal in soils were analyzed by ICP-OES after acid digestion ($HNO_3$:HCl:$H_2O_2$) whereas extractable contents were measured after successive extraction of 0.1N-HCl, 0.05 M-EDTA, and 0.005 M-DTPA. Mercury was analysed by mercury atomizer. The average contents of Cd Cu, and Pb in the extractant with 0.1N-HCl at upper layer were 0.080, 4.23, and 3.42 mg/kg, respectively. As content in the extractant with 1N-HCl was 0.44 mg/kg, and total contents of Zn, Ni and Hg were 78.9, 16.1, and 0.052 mg/kg, respectively. The ratios of concentrations of heavy metals to threshold values (Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/ke in Soil Environmental Conservation Act in Korea (2001) were low in the range of $1/2.5{\sim}1/76.9$ in orchard soils. The ratios of extractable heavy metal to total content ranged $5.4{\sim}9.21%$ for Cd, $27.9{\sim}47.8%$ for Cu, $12.6{\sim}21.8$% for Pb, $15.8{\sim}20.3%$ for Zn, $5.3{\sim}6.3%$ for Ni, and $0.7{\sim}3.6%$ for Zn, respectively. Cu and Pb contents in 0.05 M-EDTA extractable solution were higher than those in the other extractable solution. Total contents of Cd, Ni and Ni in soils were negatively correlated with sand content but positively correlated with silt and clay contents. Ratios of extractable heavy metal to total content were negatively correlated with clay content but ai and Ni contents were positively correlated with soil pH, organic matter, and available phosphorous. Therefore, the orchard soil was safe because the heavy metal contents of orchard soil were very low as compared to its threshold value in the Soil Environmental Conservation Act. However, it need to consider the input of agricultural materials to the agricultural land for farming practices for assessment of heavy metals.

Environmental factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium (온도와 토양습도가 마늘 흑색썩음균핵병 발생에 미치는 영향)

  • Kim Yong-Ki;Kwon Mi-Kyung;Shim Hong-Sik;Kim Tack-Soo;Yeh Wan-Hae;Cho Weon-Dae;Choi In-Hu;Lee Seong-Chan;Ko Sug-Ju;Lee Yong-Hwan;Lee Chan-Jung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 2005
  • This study was conducted to elucidate effect of environmental factors on the development of white rot. In order to identify the causal agents causing white rot of Allium crops, we compared DNA profiles of a representative isolate, Sclerotium cepivorum, introduced from foreign country with Korean isolates using UP-PCR. As a result, Sclerotium isolates forming round-shaped sclerotia were identified as Sclerotium cepivorum pertaining in UP-PCR b group and Sclerotium isolates farming anamorphic-shaped sclerotia presumed to be a novel species of Sclerotium based on DNA profiles of UP-PCR. There was a big difference in DNA band pattern between two species of Sclerotium isolated in Korea. Electron micrographs of scanning electron microscope and transmission electron microscope showed morphological differences in sclerotial surface structure and rind layers between two species of Sclerotium. There were more wrinkles and pore spaces on sclerotial surface of Sclerotium sp. forming anamorphic-shaped sclerotia than that of Sclerotium cepivorum forming round-shaped sclerotia. Both of two white rot pathogens grew well at the temperature range of $10-25^{\circ}C$ with optimal temperature of $20^{\circ}C$. Sclerotia of the two pathogens were well formed at $20^{\circ}C$ and well germinated at the temperature range of $20-24^{\circ}C$, Effect of pre-incubation of sclerotia on destruction of sclerotial dormancy of two pathogens was evaluated through storing sclerotia under different temperature condition. The sclerotia of the two pathogens showed an increased capacity to germinate on potato dextroise agar when the sclerotia were incubated for 7 days at $10^{\circ}C$ after pre-treatment at $35^{\circ}C$ for 7 days. At that time, germination rate of Sclerotium sp. and 5. cepivorum was $100\%\;and\;70\%$, respectively. Flooding period and treatment temperature had an effect on sclerotial survival rate of the two pathogens. As flooding period and treatment temperature increased, sclerotial germination rate of the two pathogens decreased. It was confirmed that soil humidity played an important role on development of white rot. It was the highest disease incidence of garlic white rot when garlic were sown at potted soils infested with the two pathogens and adjusted soil humidity to $15\%$ (field moisture capacity, about -300 mb). As soil humidity increase or decrease based on $15\%$ of soil humidity, disease incidence decreased move and more.

Classification, Analysis on Attributes and Sustainable Management Plan of Biotop Established in Pohang City (포항시 비오톱의 유형 구분, 속성 분석 및 복원 방안)

  • Jung, Song Hie;Kim, Dong Uk;Lim, Bong Soon;Kim, A Reum;Seol, Jaewon;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.245-265
    • /
    • 2019
  • Biotope, which represents the characteristic habitats of living organisms, need to be identified as essential for the efficient creation and sustainable management of urban ecosystems. This study was carried out to provide the basic information for ecological urban planning by analyzing types and attributes of the biotop established throughout the whole area of the Pohang city, a representative industrial city in Korea. The biotop established in Pohang city is composed of 12 types including forests (coniferous, deciduous, and mixed forests), agricultural fields (rice paddy and upland field), green facilities, river, reservoir, bare ground, residential area, public facilities, commercial area, industrial area, roads, and schools. As a result of analyzing the properties according to biotop types, industrial, commercial and residential areas, which represent urban areas, was dominated by introduced vegetation. Moreover the introduced vegetation is usually composed of exotic plants or modified forms for landscape architecture and horticulture rather than native plants, which reflects ecological property of both region and site. As the distance from the urban center increases, the agricultural field showed a form of typical farmland, whereas the closer it is, the more form of greenhouse farming. Natural green spaces were divided into riparian vegetation established along the stream and forest vegetation. Forest vegetation is consisted of secondary forests (seven communities) and plantations (three communities). The urban landscape of Pohang city is dominated by the industrial area. Among them, the steel industry, which occurs large amounts of heat pollution and carbon dioxide, occupies a large proportion. On the other hand, green space is very insufficient in quantity and inferior in quality. This study proposed several restoration plans and further, a green network, which ties the existing green spaces and the green space to be restored as a strategy to improve the environmental quality in this area.

Improvement of Certification Criteria based on Analysis of On-site Investigation of Good Agricultural Practices(GAP) for Ginseng (인삼 GAP 인증기준의 현장실천평가결과 분석에 따른 인증기준 개선방안)

  • Yoon, Deok-Hoon;Nam, Ki-Woong;Oh, Soh-Young;Kim, Ga-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2019
  • Ginseng has a unique production system that is different from those used for other crops. It is subject to the Ginseng Industry Act., requires a long-term cultivation period of 4-6 years, involves complicated cultivation characteristics whereby ginseng is not produced in a single location, and many ginseng farmers engage in mixed-farming. Therefore, to bring the production of Ginseng in line with GAP standards, it is necessary to better understand the on-site practices of Ginseng farmers according to established control points, and to provide a proper action plan for improving efficiency. Among ginseng farmers in Korea who applied for GAP certification, 77.6% obtained it, which is lower than the 94.1% of farmers who obtained certification for other products. 13.7% of the applicants were judged to be unsuitable during document review due to their use of unregistered pesticides and soil heavy metals. Another 8.7% of applicants failed to obtain certification due to inadequate management results. This is a considerably higher rate of failure than the 5.3% incompatibility of document inspection and 0.6% incompatibility of on-site inspection, which suggests that it is relatively more difficult to obtain GAP certification for ginseng farming than for other crops. Ginseng farmers were given an average of 2.65 points out of 10 essential control points and a total 72 control points, which was slightly lower than the 2.81 points obtained for other crops. In particular, ginseng farmers were given an average of 1.96 points in the evaluation of compliance with the safe use standards for pesticides, which was much lower than the average of 2.95 points for other crops. Therefore, it is necessary to train ginseng farmers to comply with the safe use of pesticides. In the other essential control points, the ginseng farmers were rated at an average of 2.33 points, lower than the 2.58 points given for other crops. Several other areas of compliance in which the ginseng farmers also rated low in comparison to other crops were found. These inclued record keeping over 1 year, record of pesticide use, pesticide storages, posts harvest storage management, hand washing before and after work, hygiene related to work clothing, training of workers safety and hygiene, and written plan of hazard management. Also, among the total 72 control points, there are 12 control points (10 required, 2 recommended) that do not apply to ginseng. Therefore, it is considered inappropriate to conduct an effective evaluation of the ginseng production process based on the existing certification standards. In conclusion, differentiated certification standards are needed to expand GAP certification for ginseng farmers, and it is also necessary to develop programs that can be implemented in a more systematic and field-oriented manner to provide the farmers with proper GAP management education.

Temperature-dependent Development and Its Model of the Greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae) (보리두갈래진딧물 [Schizaphis graminum (Rondani)]의 온도발육과 발육모형)

  • Lee, Jang-Ho;Kim, Tae-Heung;Kim, Ji-Soo;Hwangn, Chang-Yeon;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • The development of Schizaphis graminum (Rondani) was studied at various constant temperatures ranging from 15 to $32.5^{\circ}C$, with $65{\pm}5%$ RH, and a photoperiod of 16L:8D. Mortality of the $1_{st}-2_{nd}\;and\;the\;3_{rd}-4_{th}$ stage nymphs were similar at most temperature ranges while at high temperature of $32.5^{\circ}C$, more $3_{rd}-4_{th}$ stage individuals died. The total developmental time ranged from 13.8 days at $15^{\circ}C$ to 4.9 days at $30.0^{\circ}C$ suggesting that the higher the temperature, the faster the development. However, at higher end temperature of $32.5^{\circ}C$ the development took 6.4 days. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $6.8^{\circ}C$ and 105.9 day-degrees, respectively and the nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. The normalized cumulative frequency distributions of developmental period for each life stage were fitted to the three-parameter Weibull function. The attendance of shortened developmental times was apparent with $1_{st}-2_{nd}\;nymph,\;3_{rd}-4_{th}$ nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.80 and 0.87.

Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures (경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Kim, Won-Tae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.268-273
    • /
    • 2006
  • Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.

The Research and Extension System with Agro-Food industry Development: To Strengthen The Regional R&D and On-Farm Bases Extension (농식품산업의 변화와 연구·지도사업의 과제 -지역R&D와 현장지도의 강화를 위해-)

  • Choe, Young Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.4
    • /
    • pp.839-869
    • /
    • 2013
  • Since opening the domestic food markets after late 1980s, Korean agro-food sector has been changed a lot, including commercialization of livestock and horticulture sectors. The large-scale periodic transactions appeared in food retail market in 1990's demand further commercialization of farm sectors. It require comprehensive on-farm knowledges including production, food processing, marketing, and management for agricultural sector. As the result, The Farming Systems Research & Extension concept has been introduced in 1992 as a form of The Regional Specialization Experiment Station. The Science and Technology Committee for Agriculture, Forestry, Fisheries, and Foods are established in 2009. However, we still find gaps between on-farm knowledge demands and supply, requiring further refining of R&D systems. It also asks to differentiate applied research from basic disciplinary research, better linkages between research and extension on farm, and comprehensive knowledge transfer systems. This study recommends for proper role allocation and cooperative structures for regional research and extension institutions to reduce overlaps among them. It further asks government to support regional research and extension systems including human resource and infrastructure building, to strengthen commodity based on-farm research and extension, and to separate budget allocation for regional research and extension. Provincial administration of the county level extension offices should also be considered for better linkage between research and extension at regional level.

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration (토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가)

  • Shin, JoungDu;Choi, YoungSu;Choi, Eunjung;Kim, MyungSook;Heo, JeongWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

Increased Available Phosphate by Shell Meal Fertilizer Application in Upland Soil (밭 토양에서 패화석비료 시용에 따른 유효인산의 증대)

  • Lee, Chang-Hoon;Lee, Ju-Young;Ha, Byung-Hyun;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • Previous studies showed that shell meal fertilizer from the oyster farming industry could be a potential inorganic soil amendment to increase Chinese cabbage productivity and to restore the soil nutrient balance in upland soil (Lee et al., 2004). Herein, shell meal fertilizer was applied at rates of 0, 4, 8, 12, and $16Mg\;ha^{-1}$ to upland soil (Pyeontaeg series, Fine silty, Typic Endoaquepts) for Chinese cabbage cultivation. We found available phosphate increased significantly with shell meal fertilizer application, due to high content of phosphate ($1.5g\;P_2O_5\;kg^{-1}$) in the applied shell meal fertilizer. In addition, high pH of shell meal fertilizer contributed to increase available phosphate content by neutralization of acidic soil. Total and residual P contents increased significantly with increasing shell meal fertilizer application, but we could not find any tendency in organic and inorganic P fraction. Of extractable P fraction, water-soluble phosphorus (W-P) and calcium-bound P (Ca-P) contents increased significantly with increasing application level. By contrast, aluminum and iron-bound P (Al-P and Fe-P) decreased slightly with shell meal application. The present experiment indicated that shell meal fertilizer had a positive benefit on increasing available phosphate content in arable soil. And so the increased available phosphate by shell meal fertilizer may decrease phosphate application level and then reduce phosphorus loss in arable soil.