• 제목/요약/키워드: Far-field

검색결과 1,931건 처리시간 0.033초

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

초음속 터빈 캐스케이드 입구 경계조건의 특성에 관한 연구 (A Study on The Characteristics of The Inlet Boundary Condition of a Supersonic Turbine Cascade)

  • 신봉근;성영식;정수인;김귀순;이은석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.99-103
    • /
    • 2003
  • 캐스케이드 내 유동 해석은 터보 펌프의 설계 제작에 필수적인 요소이다. 그러나 기존의 무한 입구 경계 조건에서는 입구 유동의 초기 설정 경계치와 계산 후 입구 유동 경계치의 차이가 발생하여 원하는 입구 경계 조건에서의 유동 해석을 하지 못한다. 이에 본 연구에서는 Fine Turbo를 이용하여 입구 경계 조건으로 무한 경계 조건을 적용하였을 때 발생하는 문제점을 분석하였다. 그리고 무한 입구 경계 조건 대신 캐스케이드 앞에 수축·확산 노즐이나 직선 노즐을 위치시켜 전산 해석을 실시하여 그 특성을 비교, 검토하였다.

  • PDF

전력반도체 고내압 특성 향상을 위한 필드링 최적화 연구 (A Study on the Field Ring of High Voltage Characteristics Improve for the Power Semiconductor)

  • 남태진;정은식;김성종;정헌석;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.165-169
    • /
    • 2012
  • Power semiconductor devices are widely used as high voltage applications to inverters and motor drivers, etc. The blocking voltage is one of the most important parameters for power semiconductor devices. And cause of junction curvature effects, the breakdown voltage of the device edge and device unit cells was found to be lower than the 'ideal' breakdown voltage limited by the semi-infinite junction profile. In this paper, Propose the methods for field ring design by DOE (Design of Experimentation). So The field ring can be improve for breakdown voltage and optimization.

삼차원 와선의 비정상 거동에 의한 원거리 음압의 수치해석 (Numerical Calculation of the Far Field Acoustic Pressure from the Unsteady Motion of the Three-dimensional Vortex Filament)

  • 유기완;이덕주
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.942-950
    • /
    • 1997
  • Far field acoustic pressure from the evolution and interaction of three-dimensional vortex filament is calculated numerically. A vortex ring is a typical example of the three-dimensional vortex filament. An elliptic vortex ring emits a strong sound signal due to significant distortion and stretching of the vortec filament. The far field acoustic pressure is linearly dependent on the third time derivatives of the vortex positions. A numerical scheme of high resolution is employed to describe in detail the elliptic vortex ring motions which ar highly nonlinear. Descretized vortex filaments are interpolated by using a parametric blending function to remove a possible numerical instability. The distorted vortex filament, owing to the self-induced and the induced velocity from the other vortex segments, is redistributed at each time step. The accuracy and efficiency of the scheme are validated by comparisons with the analytic solution of circular vortex ring interaction.

An investigation into adequacy of separation gap to preclude earthquake-induced pounding

  • Yazan Jaradat;Pejman Sobhi and Harry Far
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.29-48
    • /
    • 2023
  • Pounding happens when contiguous structures with differing heights vibrate out of line caused by a seismic activity. The situation is aggravated due to the insufficient separation gap between the structures which can lead to the crashing of the buildings or total collapse of an edifice. Countries around the world have compiled building standards to address the pounding issue. One of the strategies recommended is the introduction of the separation gap between structures. AS1170.4-2007 is an Australian standard that requires 1% of the building height as a minimum separation gap between buildings to preclude pounding. This article presents experimental and numerical tests to determine the adequacy of this specification to prevent the occurrence of seismic pounding between steel frame structures under near-field and far-field earthquakes. The results indicated that the recommended minimum separation gap based on the Australian Standard is inaccurate if low-rise structure in a coupled case is utilised under both near and far field earthquakes. The standard is adequate if a tall building is involved but only when a far-field earthquake happens. The research likewise presents results derived by using the ABS and SRSS methods.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

A New Expression of Near-Field Gain Correction Using Photonic Sensor and Planar Near-Field Measurements

  • Hirose, Masanobu;Kurokawa, Satoru
    • Journal of electromagnetic engineering and science
    • /
    • 제12권1호
    • /
    • pp.85-93
    • /
    • 2012
  • We propose a new expression of the near-field gain correction to calculate the on-axis far-field gain from the onaxis near-field gain for a directive antenna. The new expression is represented by transversal vectorial transmitting characteristics of two antennas that are measured by planar near-field equipment. Due to the advantages of the photonic sensor, the utilization of the new expression realizes the measurements of the on-axis far-field gains for two kinds of double ridged waveguide horn antennas within 0.1 dB deviation from 1 GHz to 6 GHz without calibrating the photonic sensor system.

반무한보의 진동 인텐시티 계측에 대한 연구 (A Study on Structural Intensity Measurement of Semi-infinite Beam)

  • 이덕영;박성태
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF

다공관 출구로부터 방사된 충격성 소음에 관한 실험적 연구 (An Experimental Study on the Impulse Noise Emitted from the Exit of a Perforated Pipe)

  • 허성욱;제현수;양수영;이동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2066-2070
    • /
    • 2003
  • This experimental study describes the propagation characteristics and suppression of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The experiment is performed through the systematic change of the shock wave Mach number and the geometrical parameters such as the porosity, hole diameter and length of the perforated pipe. The experimental results for the near and far sound field are presented and explained in comparison with those for a straight pipe. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, the noise reduction performance of perforated pipe depends upon the condition of sound field. For the near sound field the perforated pipe has a little performance to suppress the impulse noise, but for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.