• Title/Summary/Keyword: Far-Field Method

Search Result 613, Processing Time 0.033 seconds

Measurement Guideline of Fresnel-Field Antenna Measurement Method

  • Oh, Soon-Soo;Moon, Jung-Ick
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.68-70
    • /
    • 2009
  • In this letter, a parametric analysis of the Fresnel-field antenna measurement method is performed for a square aperture. As a result, the optimum number of Fresnel fields for one far-field point is guided as $M_{opt}=N_{opt}=D^2/{\lambda}R+5$, where D is the antenna diameter, ${\lambda}$ is the wavelength, and R is the distance between the source antenna and the antenna under test. For the aperture size 5 ${\leq}$ $L_x/{\lambda}$ ${\leq}$ 20, the tolerable distances for gain errors of 0.5 dB and 0.2 dB can be guided as $R_{0.5\;dB}$ ${\approx}$ $1.2Lx/{\lambda}$ and $R_{0.2\;dB}$ ${\approx}$ $2.0L_x/{\lambda}$, where $L_x$ is the lateral length of the square aperture. The tolerable distances for 20 ${\leq}$ $L_x/{\lambda}$ ${\leq}$ 200 are also proposed. This measurement guideline can be fully utilized when performing the Fresnel-field antenna measurement method.

  • PDF

A Study on the Steady Drift Forces on Barge (바아지선에 작용하는 정상표류력에 관한 연구)

  • 조효제
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.38-45
    • /
    • 1997
  • The steady drift forces on a barge in waves are investigated. The steady drift forces due to a near-field method which is based on direct integration of the pressure acting on the submerged surface of barge are compared with those due to far-field method which is based on the theory of momentum conservation. Numerical results of the linear motions are compared with the experimental and numercal ones which was submitted in the literature. A convergence of the steady drift forces according to the increase of the number of panels which represent the submerged surface are discussed.

  • PDF

Plane Wave Scattering Induced Resonant Modes of Spherical Resonator (구형태 공진기에서의 평면파 산란 공진모드)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1260-1263
    • /
    • 2013
  • Plane wave scattering from a spherical resonator is calculated by solving the combined field integral equation (CFIE) with Rao-Wilton-Glisson (RWG) basis functions and the moment method. The calculations show that magnetic and electric dipoles are found at resonant modes. These characteristics are confirmed by radiation patterns in the far field region. In addition, an analysis of a magnetodielectric sphere is discussed.

Seismic Response Analysis Method for 2-D Linear Soil-Structure Systemsusing Finite and Infinite Elements (유한요소와 무한요소를 사용한 2차원 선형 지반-구조물계의 지진응답해석법)

  • 김재민;윤정방;김두기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.231-244
    • /
    • 2000
  • This paper presents a dynamic analysis technique for a 2-D soil-structure interaction problem in the frequency domain, which can directly be applied as an analysis tool for seismic response analyses of underground structures, tunnels, embankments, and so on. In this method, the structure and near-field soil is modeled by the standard finite elements, while the unbounded far-field soil is represented using the dynamic infinite elements in the frequency domain. The earthquake-input motion is regarded as traveling P and SV waves which are incident vertically from the far-field of underlying half-space to the near-field of layered medium. The equivalent earthquake forces are then calculated utilizing so-called fixed-exterior-boundary-method and the free-field responses including displacements and tractions. For the verification of the present study, seismic response analyses are carried out for a multi-layered half-space free-field soil medium and a cylindrical cavity embedded in a homogeneous half-space. Comparisons of the present results with solutions by other approaches indicate that the proposed methodology gives accurate estimates. Finally, an application example of seismic response analysis for a subway station is presented, which demonstrates the applicability of the present study.

  • PDF

Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Sang-Hun;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • As a first step toward a complete CFD-CSD coupling for helicopter rotor load analysis, the present study attempts to loosely couple a CFD code with a source-double panel method. The far-field wake effects were calculated by a time-marching free vortex wake method and were implemented into the CFD module via field velocity approach. Unlike the lifting line method, the air loads correction process is not trivial for the source-doublet panel method. The air loads correction process between the source-doublet method and CFD is newly suggested in this work and the computation results are validated against available data for well-known hovering flight conditions.

A Probabilistic Analysis of Soil-Structure Interaction Using Infinite Elements (무한요소를 이용한 지반 구조물 상호작용의 확률론적 해석)

  • 이인모;노한성
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.33-44
    • /
    • 1989
  • In this paper, uncertainties in dynamic soil structure interaction (SSI) of nuclear poi.or plants subjected to seismic loading are studied considering the random characteristics of soils surround- ing the structure. Firstly sensitivity analysis is performed to study the effect of uncertain dynamic soil properties on the response of the structure. Secondly, to take into account the non-neterministic characteristics in analysis caused by random characteristics of the soil properties, Perturbation method and Rosenblueth's Two point estimates were used for this studu. The procedure is based on the comptex response method which is constituted by a combined usage of conventional finite elements for the near field and infinite elements for the far field. Results of the sensitivity analysis show that dynamic soil properties greatly affect the response of the sol.uc- lure. Results of the probabilistic analysis show that the Two-point estimate method produces good agreements with the Perturbation method.

  • PDF

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 판토그라프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1235-1241
    • /
    • 2001
  • Pantograph design process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore Pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings (FW-H) equation is used to calculate the flow induced sound pressure level. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25m away from panhead contact strips. Based on aerodynamic (CFD) and aeroacoustic (FW-H) analysis data, the optimal sizing and positioning ofpanhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. Using a parameter design procedure associated with signal-to-noise (SIN) ratio and sensitivity analysis, an optimal level of design parameters are extracted to minimize the disconnection ratio between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

  • PDF

Improving the quality of light-field data extracted from a hologram using deep learning

  • Dae-youl Park;Joongki Park
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.165-174
    • /
    • 2024
  • We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.

신속한 3차원 전자탐사 모델링

  • Jo, In-Gi;Kim, Ha-Rim
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The integral equation method is a powerful tool for electromagnetic numerical modeling. But the difficulty of this technique is the size of their linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. To overcome this limitation, a lot of approximation and series methods, such as conventional Born, modifed Born and extended Born, were developed. But all the methods need volume integration of Green tensor, which is very time consuming. In electromagnetic theory, Green tensor rapidly decreases as the distance between source and field cell increases. Therefore, the source cell which are far away from the field cell does not make an effect on the electric field of the field cell. Consequently, by ignoring the effect of Green tensor due to far away source cells, computing time for electromagnetic numerical modeling can be reduced dramatically. Comparisons of this new method against a full integral equation, extended Born approximation and series code show that the method is accurate enough much less time consuming.

  • PDF

DEVELOPMENT OF UNEVEN FAN BY AERO-ACOUSTICS ANALYSIS & OPTIMIZATION METHOD (공력소음해석과 최적화 기법을 통한 비등간격 팬 개발)

  • Kim, J.S.;Kim, H.S.;Hyun, K.T.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Acoustic pressure field around the centrifugal fan is predicted by a aero-acoustic splitting method. Unsteady flow field is obtained by solving the incompressible Navier-Stokes equations using commercial code, while the acoustic waves generated inside the centrifugal fan and shroud are predicted by solving the far field acoustics analysis. Computational results show that the acoustic waves of BPF tone are generated by interactions of the blades with the shroud. Acoustic results is validated by experimental results This paper describes the influence of geometric parameters on the noise generation from the section of blades and shroud. One of the effective ways to reduce BPF noise is optimization method using Genetic Algorithm, which effectively minimize eccentricity, is suggested. New improving design was developed by optimization method.