• 제목/요약/키워드: Far-Field Inlet Boundary Condition

검색결과 4건 처리시간 0.02초

A Study on the Effect of Inlet Boundary Condition on Flow Characteristics of a Supersonic Turbine

  • Shin, Bong-Gun;Kim, Kui-Soon;Kim, Jin-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2005
  • The inlet boundary condition of computations about the supersonic turbine flow is commonly applied as far-field inlet boundary condition with specified velocity. However, the inflow condition of supersonic turbine is sometimes affected by the shocks or expansion waves propagated from leading edges of blade. These shocks and expansion waves alter the inlet boundary condition. In this case, the inlet boundary condition can not be specified Therefore, in this paper, numerical analyses for three different inlet conditions - fa-field inlet boundary condition, inlet boundary condition with a linear nozzle and inlet boundary condition with a converging-diverging nozzle - have been performed and compared with experimental results to solve the problem. It is found that the inlet condition with a linear nozzle or a converging-diverging nozzle can prevent changing of inlet boundary condition, and thus predict more accurately the supersonic flow within turbine cascade than a far-field inlet boundary condition does.

초음속 터빈 캐스케이드 입구 경계조건의 특성에 관한 연구 (A Study on The Characteristics of The Inlet Boundary Condition of a Supersonic Turbine Cascade)

  • 신봉근;성영식;정수인;김귀순;이은석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.99-103
    • /
    • 2003
  • 캐스케이드 내 유동 해석은 터보 펌프의 설계 제작에 필수적인 요소이다. 그러나 기존의 무한 입구 경계 조건에서는 입구 유동의 초기 설정 경계치와 계산 후 입구 유동 경계치의 차이가 발생하여 원하는 입구 경계 조건에서의 유동 해석을 하지 못한다. 이에 본 연구에서는 Fine Turbo를 이용하여 입구 경계 조건으로 무한 경계 조건을 적용하였을 때 발생하는 문제점을 분석하였다. 그리고 무한 입구 경계 조건 대신 캐스케이드 앞에 수축·확산 노즐이나 직선 노즐을 위치시켜 전산 해석을 실시하여 그 특성을 비교, 검토하였다.

  • PDF

3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구 (Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis)

  • 진봉용;이상호;조남효
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

라이너가 있는 덕트의 소음방사 특성에 관한 수치적 연구 (A Numerical Study of Radiation Effect from Ducted Fans with Liners)

  • 임창우;정철웅;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1010-1015
    • /
    • 2002
  • Over the last few decades, noise has played a major role in the development of aircraft engines. The dominant noise is generated by the wake interactions of fan and downstream stator. Engine inlet and exhaust ducts are being fitted with liner materials that aid in damping fan related noise. In this paper, the radiation of duct internal noise from duct open ends with liners is studies via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP scheme. The far field sound pressure levels are computed by the Kirchhoff integration method. Through comparison of sound directivity from bell-mouth duct with and without liners, it is shown that radiation from engine inlet is affected by liner effects or a soft wall boundary condition.

  • PDF