• Title/Summary/Keyword: Far part 23

Search Result 56, Processing Time 0.033 seconds

Study on New Airworthiness Requirements of Powerplant System for the Small Airplane (소형 비행기 동력장치에 관한 신규 인증요건 분석)

  • Lee, Eunsuk;Lee, Seung geun;Lee, Kang-Yi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.207-212
    • /
    • 2017
  • Korean civil airworthiness requirements of powerplant system are regulated on KAS Part 23 and Part 33. These are equivalent to FAR Part 23, Part 33 of FAA and CS-23, CS-E of EASA. FAA and EASA rewrites entire airworthiness requirements for the small airplane. It changed current 'prescriptive regulation' into 'performance-based regulation' which makes the object of safety performance. Powerplant requirements are also changed extensively by these concept revolution. In accordance with reorganization, we studied new powerplant system requirements of FAR Part 23 and proposed ideal direction to rewrite of Korean Airworthiness Standard rewrite.

  • PDF

Study on New Airworthiness Requirements of Powerplant System for the Small Airplane (소형 비행기 동력장치에 관한 신규 인증요건 분석)

  • Lee, Eunsuk;Lee, Seung geun;Lee, Kang-Yi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.128-133
    • /
    • 2018
  • Korean civil airworthiness requirements of powerplant system are regulated by KAS(Korean Airworthiness Standard) Part 23 and Part 33. These are equivalent to FAR Part 23, Part 33 of FAA, and CS-23 and CS-E of EASA. FAA and EASA rewrite the airworthiness requirements for small airplane. They changed current 'prescriptive regulation' to a 'performance-based regulation' which makes safety performance the objective. Powerplant requirements have also been changed extensively by this concept revolution. In accordance with this reorganization, we studied the new powerplant system requirements of FAR Part 23 and proposed ideal directions to rewrite the Korean Airworthiness Standard.

Analytical Study for the Safety Enhancement of the Bird Strike to Small Aircraft using a Crushable Foam (Crushable Foam을 이용한 소형항공기 조류충돌 안전성 향상에 관한 해석적 연구)

  • Park, Ill-Kyung;Choi, Ik-Hyun;Ahn, Seok-Min;Lee, Sang-Jong;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The Bird strike to small aircraft has not been an issue because of it's low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet) and (light time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety enhancement concept using a crushable foam for the bird strike to small aircraft wing leading edge, and the evaluation about the safety of the bird strike to small aircraft are proposed using the explicit finite element analysis.

  • PDF

Study on the stall characteristics improvement and compliance verification of the G.A. airplane (소형비행기 실속특성 향상 및 적합성검증 방안 연구)

  • Choi, Joowon;Kim, Jinsoo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.47-54
    • /
    • 2014
  • This is a research on the method of how to improve stall characteristics for the small general aviation airplanes to meet the FAR part 23 requirements. This research is based on the experience of certification flight tests of KC-100 airplane for Korea type certification. KAS/FAR Part 23.201/203 are the stall characteristics requirements. 23.201 requires to show the stable stalling tendency of the wings level stall and 23.203 requires to show the stable stalling tendency of stall characteristics during turning flight. In this paper, the stall characteristics requirements, improvement methods and flight test experience of KC-100 airplane for type certification.

Basic Design of Composite Wing Box for Light Aircraft (소형 항공기 복합재 주익 구조의 기본 설계)

  • Park, Sang-Yoon;Doh, Hyun-Il;Hwang, Myoung-Sin;Eun, Hee-Bong;Choi, Won-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.74-81
    • /
    • 2004
  • In this study preliminary structural design has been performed to develop an all composite wing box for experimental aircraft(classified in FAR Part 21). Considerations on composite materials and their manufacturing process were taken into account throughout the design phase. Aerodynamic loads were estimated by using Shrenk method(NACA TM No 948) and FAR Part 23 Appendix A. The structural layout has been determined to carry effectively the critical loads and to maximize the benefit of composite structure. Maximum strain failure allowable and first ply failure criteria were applied for the sizing of major structural members. Finally, the designed composite wing box structure is presented in the form of drawings, which include material specifications, stacking sequences and joint design.

A Consideration on Composite Material Certification for Small Aircraft Structure (복합재 소형 항공기 구조 인증 고려사항에 대한 고찰)

  • Suh, Jang-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.128-140
    • /
    • 2009
  • In this paper, the technical problems or considerations which could be arisen at the certification for composite small aircraft structures per FAR Part 23 have been reviewed and the actions expected applicants should take also have been explored. This paper focuses on the technical problems considered to be happening and describes the relation to the certification regulations and to the certification experiences. This paper is general information to composite certification activities, and presents some useful guidance materials and reference materials. The general information described in this paper could not be applied to any composite structures and to the secondary structures which not critical to flight safety.

  • PDF

Study on the lateral stability improvement and compliance verification (소형비행기 가로안정성 향상 및 적합성검증 방안 연구)

  • Choi, Joo-Won;Kim, Chan-Jo;Jung, Hoon-Hwa;Kim, Jin-Su
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 2013
  • This is a research on the method of how to improve lateral stability for the small general aviation airplane to meet the FAR part 23 requirements. This research is based on the experience of certification flight tests of KC-100 airplane for Korea first type certification. KAS/FAR Part 23.177 is the static lateral and directional stability requirement. And, 23.177(b) requires to show the tendency to raise the low wing in steady heading side slip maneuver. However, it is very difficult for the low wing to be raised at the low speed during the steady heading side slip maneuver. So, the requirement allows not be negative at the $1.2V_{S1}$ speed and takeoff configuration. (static stability requirement requires low wing picked up at any speed except $1.2V_{S1}$ speed and takeoff configuration) In this paper, the static lateral stability requirements and the lessons & learned of KC-100 airplane certification flight test results are shown.

Initial Sizing of a Roadable PAV Considering Airfoil and Engine Types (익형과 엔진 종류를 고려한 도로주행형 PAV 초기 사이징)

  • Cha, Jae-Young;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2019
  • In many countries, there are needs of new transportations to replace ground congestions due to growing number of cars. In addition, the increase in the number of cars held by economic growth will further increase traffic congestion in the future. To overcome this problem, many researches have been performed for personal air vehicle (PAV). In this study, the wing loading and the power-to-weight ratio that are major design parameters for the sizing of roadable PAVs were calculated for different kinds of airfoil and engine types. I.e., in the sizing process, the study was conducted to determine the design point using the graphs of wing loading, power-to-weight ratio, brake horse power, and fuel efficiency for the given mission profiles considering domestic environments and the FAR PART 23 which is the GA class aircraft certification standard. As a result of sizing, using diesel engine require high maximum take-off weight, wing area, and power compared to gasoline engine due to more engine weight.

Analytical Study for the Safety of the Bird Strike to the Small Aircraft Having a Composite Wing (복합재 주익을 갖는 소형항공기 조류충돌 시 안전성에 관한 해석적 연구)

  • Park, Ill-Kyung;Kim, Seung-Jun;Choe, Ik-Hyun;An, Seok-Min;Yeo, Chan-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The bird strike to small aircraft has not been an issue because of its low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet), the usage of a composite material for an aircraft structure and flight time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety of bird strike to small aircraft wing leading edge made of a metal and a composite material were compared using the explicit finite element analysis.

A Study on the System Engineering Application to KC-100 Aircraft Development (민간항공기개발 시스템엔지니어링 적용 연구)

  • Choi, Nag-Sun;Kang, Min-Seong;Kim, Kwang-Hae;Koh, Dae-Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.49-56
    • /
    • 2009
  • KC-100(KAI Civil Aircraft, Small Series) aircraft is 4 seats general aviation aircraft with single piston engine which is developing under FAA part 23 category by Korea Aerospace Industries(KAI) and will be a shadow program for civil aircraft safety infrastructure improvement. This aircraft will be the first civil aircraft developed in Korea meeting the Korean regulatory KAS Part 23 requirements. Type certification for KC-100 aircraft was applied at the second half of this year. The type certificate is expected to be issued after 3 years of design, prototype manufacturing, ground and flight tests. In this paper the system engineering process for civil aircraft was first reviewed. Next, the differences and similarities in the system development between military and civil aircraft were systematically examined using experiences for KAI military aircraft development program.

  • PDF