• Title/Summary/Keyword: Fang Algorithm

Search Result 68, Processing Time 0.025 seconds

Differencing Multiuser Detection Using Error Feedback Filter for MIMO DS-UWB System in Nakagami Fading Channel

  • Kong, Zhengmin;Fang, Yanjun;Zhang, Yuxuan;Peng, Shixin;Zhu, Guangxi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2601-2619
    • /
    • 2012
  • A differencing multiuser detection (MUD) method is proposed for multiple-input multiple-output (MIMO) direct sequence (DS) ultra-wideband (UWB) system to cope with the multiple access interference (MAI) and the computational efficiency in Nakagami fading channel. The method, which combines a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter (MIC DFE-EFF), a coefficient optimization algorithm (COA) and a differencing algorithm (DA), is termed as MIC DFE-EFF (COA) with DA for short. In the paper, the proposed MUD method is illuminated from the rudimental MIC DFE-EFF to the advanced MIC DFE-EFF (COA) with DA step by step. Firstly, the MIC DFE-EFF system performance is analyzed by minimum mean square error criterion. Secondly, the COA is investigated for optimization of each filter coefficient. Finally, the DA is introduced to reduce the computational complexity while sacrificing little performance. Simulations show a significant performance gain can be achieved by using the MIC DFE-EFF (COA) with DA detector. The proposed MIC DFE-EFF (COA) with DA improves both bit error rate performance and computational efficiency relative to DFE, DFE-EFF, parallel interference cancellation (PIC), MIC DFE-EFF and MIC DFE-EFF with DA, though it sacrifices little system performance, compared with MIC DFE-EFF (COA) without DA.

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes

  • Li, Hongwei;Wu, Huabing;Jiang, Biyu;Zhang, Anan;Fang, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-75
    • /
    • 2016
  • Aiming at analyzing the power flow of the distribution systems with distribution transformer (DT) branches and PV nodes, a hybrid three-phase power flow methodology is presented in this paper. The incidence formulas among node voltages, loop currents and node current injections have been developed based on node-branch incidence matrix of the distribution network. The method can solve the power flow directly and has higher efficiency. Moreover, the paper provides a modified method to model DT branches by considering winding connections, phase shifting and off-nominal tap ratio, and then DT branches could be seen like one transmission line with the proposed power flow method. To deal with the PV nodes, an improved approach to calculate reactive power increment at each PV node was deduced based on the assumption that the positive-sequence voltage magnitude of PV node is fixed at a given value. Then during calculating the power flow at each iteration, it only needs to update current injection at each PV node with the proposed algorithm. The process is very simple and clear. The results of IEEE 4 nodes and the modified IEEE 34 nodes test feeders verified the correctness and efficiency of the proposed hybrid power flow algorithm.

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.

Track Initiation and Target Tracking Filter Using LiDAR for Ship Tracking in Marine Environment (해양환경에서 선박 추적을 위한 라이다를 이용한 궤적 초기화 및 표적 추적 필터)

  • Fang, Tae Hyun;Han, Jungwook;Son, Nam-Sun;Kim, Sun Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2016
  • This paper describes the track initiation and target-tracking filter for ship tracking in a marine environment by using Light Detection And Ranging (LiDAR). LiDAR with three-dimensional scanning capability is more useful for target tracking in the short to medium range compared to RADAR. LiDAR has rotating multi-beams that return point clouds reflected from targets. Through preprocessing the cluster of the point cloud, the center point can be obtained from the cloud. Target tracking is carried out by using the center points of targets. The track of the target is initiated by investigating the normalized distance between the center points and connecting the points. The regular track obtained from the track initiation can be maintained by the target-tracking filter, which is commonly used in radar target tracking. The target-tracking filter is constructed to track a maneuvering target in a cluttered environment. The target-tracking algorithm including track initiation is experimentally evaluated in a sea-trial test with several boats.

A Study on Control Algorithm for Longitudinal Stability of Large WIG Craft with FBW (FBW를 채용한 대형 위그선의 종방향 운동 안정화를 위한 조종면 제어 알고리즘 설계에 대한 연구)

  • Fang, Tae-Hyun;Yeo, Dong-Jin;Lee, Han-Jin;Kang, Chang-Gu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.180-188
    • /
    • 2007
  • In this paper the longitudinal control problem for the large WIG(wing-in-ground effect) craft is considered in the sense of the control augmentation system(CAS) derived by control surface of elevator. In order to achieve longitudinally stable systems, two modes of CAS are applied to the control systems which are pitch rate hold mode and pitch hold mode for steady flight. Since the employed CASs include the dynamic properties of the actuator time delay and the low pass filter, it provides the possible solution to be applicable to real systems. Nonlinear model simulations are fulfilled to investigate the effectiveness of the applied CASs with wind disturbance.

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.

Recommendations Based on Listwise Learning-to-Rank by Incorporating Social Information

  • Fang, Chen;Zhang, Hengwei;Zhang, Ming;Wang, Jindong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.109-134
    • /
    • 2018
  • Collaborative Filtering (CF) is widely used in recommendation field, which can be divided into rating-based CF and learning-to-rank based CF. Although many methods have been proposed based on these two kinds of CF, there still be room for improvement. Firstly, the data sparsity problem still remains a big challenge for CF algorithms. Secondly, the malicious rating given by some illegal users may affect the recommendation accuracy. Existing CF algorithms seldom took both of the two observations into consideration. In this paper, we propose a recommendation method based on listwise learning-to-rank by incorporating users' social information. By taking both ratings and order of items into consideration, the Plackett-Luce model is presented to find more accurate similar users. In order to alleviate the data sparsity problem, the improved matrix factorization model by integrating the influence of similar users is proposed to predict the rating. On the basis of exploring the trust relationship between users according to their social information, a listwise learning-to-rank algorithm is proposed to learn an optimal ranking model, which can output the recommendation list more consistent with the user preference. Comprehensive experiments conducted on two public real-world datasets show that our approach not only achieves high recommendation accuracy in relatively short runtime, but also is able to reduce the impact of malicious ratings.

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.