• Title/Summary/Keyword: Fan-Blade

Search Result 358, Processing Time 0.024 seconds

Development of 3D Holographic Multi-vision applying Wi-Fi Interlocking Technology

  • Park, Myeong-Chul;Kim, Soon-Hee;Hur, Hwa-La
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • In this paper, we propose a multi-vision based hologram display to improve the limited viewing angle problem of a single fan hologram display. Existing single fan type displays have a narrow viewing angle. And when the length of the fan becomes longer, there is a problem of low resolution. Also, it is difficult to change data due to the use of the SD card. So, we want to implement a dedicated app to transmit data via Wi-Fi. In this paper, we designed and implemented a display consisting of 3 REG LED fans. As a result of video transmission using the app, it was confirmed that it can be used for commercial purposes such as advertisements and demonstrations. The results of this study are thought to be of great help in the popularization of multi-vision holograms.

Effect of Geometric Variation on Aerodynamic Characteristics of a Shrouded Tail Rotor (덮개꼬리로부터의 형상변화에 따른 공력 특성에 관한 연구)

  • Lee, H.-D.;Kang, H.-J.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.9-17
    • /
    • 2005
  • In the early stage of helicopter design, an optimal configuration is usually determined after a numerous parametric study about the aerodynamic performance due to geometric variation. In order to improve the aerodynamic performance of a shrouded tail rotor, optimization of the tip clearance gap between blade and shroud, the blade planform shape, and the arrangement of blade spacing is required. In the present study, the aerodynamic performance characteristics of a shrouded tail rotor due to geometric variation was investigated by using an inviscid compressible unstructured mesh flow solver for rotary wings.

The Analysis on Audible Noise Level and Cooling Performance for the Low Noise Cooling Fan of Power Transformers (전력용 변압기 저소음 냉각팬의 소음레벨 및 냉각성능 분석)

  • Koo, Kyo-Sun;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.110-115
    • /
    • 2009
  • Recently, there has been a growing global interest in environmental conservation, and the field of electric power equipment has been working to become more environment-friendly. Accordingly, the low noise cooling fan of power transformers was developed through the improvement of blade shape. These are expected to apply to existing power transformers and low noise transformers. It is essential for low noise fan to possess good cooling performance as well as low audible noises. But, there was not analysis on the audible noise level and the cooling performance for low noise cooling fans until present. In this paper, we measure the audible noise level and the flow rate of low noise cooling fans to inspect the performance, Also, we confirmed that the low noise cooling fan is available to apply to power transformers through temperature rise tests of power transformers.

Application of Airfoil Impeller for Enhancement of Aerodynamic Performance of High Speed Centrifugal Fan (고속 원심홴의 공력성능 향상을 위한 에어포일 임펠러 적용)

  • Park, Kyung Hyun;Park, Chang Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.321-327
    • /
    • 2016
  • This paper presents the application of airfoil impeller for enhancement of aerodynamic performance of a high speed centrifugal fan. Three airfoil impellers are proposed, considering the maximum thickness and the location of maximum thickness of the airfoil. C4 airfoil thickness distribution is applied to the three airfoil impellers. The impellers are evaluated using CFD (computational fluid dynamics) and suction power test. From the results, it is confirmed that flow separations on the pressure side of the impeller blades and the pressure side of diffuser blades are reduced when airfoil blade is applied to the impellers. It is also confirmed that with the centrifugal fan having airfoil impellers, there is an increase in fan efficiency by approximately 3% and reduction in specific sound level by approximately 1.3 dB(A).

Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer (의류 건조기 성능 향상과 공력소음 저감을 위한 원심팬의 날개 형상 최적화)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Min-kyu;Lee, Kwangho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • The purpose of this study is paper is to improve the flow performance and to reduce the aerodynamic noise of air discharge system consisting of a centrifugal fan, ducts and a housing for the clothes dryer. Using computational fluid dynamics and acoustic analogy based on FW-H (Ffowcs-Williams and Hawkings) Eq., air flow field and acoustic fields of the air discharge system are investigated. To optimize aerodynamic performance and aerodynamic noise, the response surface method is employed. The two factors central composite design using the inflow and outflow angles of fan blades is adopted. The devised optimum design shows the reduction of turbulent kinetic energy in the ducts and the housing of the system, and as a result, the improved flow rate and reduce noise is confirmed. Finally, the experment using the proto-type manufactured usign the optimum design shows the increase of flow rate by 4.2 %.

Revision of Forward Curved Bladed fans: KS B 6326 (원심 전향익 송풍기 제품규격 KS B 6326의 개정 해설)

  • Lee, Seungbae;Kim, H.-R;Kim, Kwang-Yong;Jung, Keun-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.46-51
    • /
    • 2001
  • The revision is proposed for forward curved bladed fans in order to make the KS B 6326 established in 1987 in agreements with newly revised KS standards. This proposal includes modification of Aplication range, numbering system, classification based on performance, and allowing dimensions for specified sizes.

  • PDF

Revision of Forward Curved Bladed Fans: KS B 6326 (원심 전향익 송풍기 제품규격 KS B 6326의 개정)

  • Lee, Seungbae;Kim, H.-R.;Kim, Kwang-Yong;Jung, Keun-Hwa
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.104-109
    • /
    • 2000
  • The revision was proposed for forward curved bladed fans in order to make the KS B 6326 established in In in agreements with newly revised KS standards. This proposal includes modification of Application range, numbering system classification based on performance, and allowing dimensions for specified sizes.

  • PDF

High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence (유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soogab;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.

Design optimization of the staking line for an electric fan blade using CFD (CFD를 이용한 선풍기 날개의 스태킹 라인 최적 설계)

  • Park, Seunghwan;Ryu, Minhyoung;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.903-910
    • /
    • 2014
  • Electric fans, which consist of axial blades, are operated by the induction motor. In this paper, the objective of this study is the performance improvement of the base model fan using the design optimization. In order to aerodynamic analysis, computational simulations are performed using commercial tool ANSYS-CFX ver. 14.5. And k-${\omega}$ SST turbulence model is used for the CFD analysis. The design variables are set up as sweep and lean angles. Volumetric flow rate and torque of the fan blades are fixed to objective function. The optimized model is shown the increment of the volumetric flow rate and the reduction of the torque compared with the base model. The experimental procedure is followed KS C 9301. CFD results and experimental results are fairly well matched.

Computation of Broadband Noise of a 2-B Flat-airfoil Cascade Subject to Ingested Turbulence (난류 와류의 입사에 의한 이차원 평판 에어포일 캐스케이드의 광대역 소음장의 계산)

  • Cheong, Cheolung;Joseph Phillip;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.687-696
    • /
    • 2005
  • Acoustic power spectrum of the upstream and downstream sound field due to an isotropic frozen turbulent gust impinging on a cascade of flat plate airfoils are computed by using a analytic formulation derived from Smith's method, and Whitehead's LINSUB codes. A parametric study of the effects on sound power of the number of blades and turbulence length scale is performed with an emphasis on analyzing the characteristics of sound power spectrum. Through the comparison of the computed results of sound power, it is found that acoustic power spectrum from the 2-D cascade subject to a ingested turbulence can be categorized into two distinct regions. one is lower frequency region where some spectral components of turbulence do not contribute to the cut-on acoustic modes and therefore the effect of the cascade geometry is more dominant ; the other is higher frequency region where all of spectral components of turbulence make contributions to cut-on acoustic modes and thus acoustic power is approximately proportional to the blade number.