• Title/Summary/Keyword: Fan flow performance

Search Result 421, Processing Time 0.034 seconds

Effects of the Impeller Inlet Tip Clearance on the Flow and Performance of Airfoil Fans (임펠러 흡입구 간극이 원심형 에어포일 송풍기의 성능에 미치는 영향)

  • Kang, Shin-Hyoung;Kim, Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.957-968
    • /
    • 1999
  • Performance tests of an airfoil fan and measurement of flow fields at the impeller exit are carried out to investigate the effects of the tip clearance between the rotor and inlet casing on the impeller performance. The impeller is twelve bladed of NACA 65-810 airfoils and tested with 3 different size of gap; 1, 2, 4mm. The relative decrease of pressure rising performance of the fan is 15 percent for the design flow rate when the gap size is 1 percent of the impeller diameter. The reduction of performance becomes large as the flow rate increases. The leakage flow through the clearance affects the through flow of the impeller, which results in decrease of the slip factor as well as the impeller efficiency. The data base obtained in the present study can be used for the design and flow analysis of the airfoil fans.

Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan (리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향)

  • Kim, Hyung-Sub;Kim, Dong-Won;Yoon, Tae-Seok;Park, Sung-Kwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

Experimental Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Curvature Radius of a Rear-Guider for a Room Air-Conditioner (리어가이더 곡률반경에 따른 룸에어콘용 관류홴의 공력성능에 대한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.36-44
    • /
    • 2013
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. Also, these factors are given to the various diameter ratio between a basic circle and a impeller. The static pressure and the flowrate of a cross-flow fan were measured with a fan-tester. It could be found that the useful design factors with a good aerodynamic performance exist in the certain assembly conditions of an indoor RAC. Therefore, it could be known that a new published patent determining the easy design of an indoor RAC can be applied in a variety of goods.

Experimental Study on the Performance of a Forward-Curved Centrifugal Fan for an Automotive Air-Conditioner (자동차 에어컨용 전곡형 원심 송풍기의 공력성능 분석)

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.122-128
    • /
    • 2000
  • Aerodynamic optimization of an automotive air-conditioning blower is a hard task because of the highly complex flow phenomena related to three-dimensional flow separations and the unsteady nature caused by the interaction between primary and secondary air flows throughout the fan. In this paper, an aerodynamic study on a forward-curved centrifugal fan has been carried out Firstly we obtained the fan performance curves versus flow rates showing its unstable nature in the surging operation range. Secondly aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage using a 5-hole pilot probe, at different operating conditions. Surface flow pattern near the cut-off area exhibits similar flow behavior above the best efficiency operating point, although the pressure level increases substantially with the Increase of flow rate. Vorticity in the casing passage flow occurs in all (low rates, downstream from the r-Z plane $\theta$=120 deg., where the position of its core changes with the circumferential location. Although complex, the general flow behavior were common, giving insight in its main aerodynamic features.

  • PDF

Experimental Study of Cooling Fan Performance Analysis and Shroud Characteristics for an Excavator (굴삭기 냉각팬 성능해석 및 슈라우드 특성에 대한 실험적 연구)

  • Lee, Jae-Seok;Chung, Kyung-Nam;Kim, Jin-Young;Lee, Tae-Kyung;Kang, Jeong-Won;Shim, Jae-Koo;Son, Deuk-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2597-2602
    • /
    • 2007
  • In this paper, the performance analysis is experimentally carried out in order to select the best cooling fan and shroud considering both cooling performance and noise reduction. 4 cooling fans have been tested in the fan tester and the real excavator. In order to obtain the performance of the cooling fans, flow capacity has been estimated by measuring flow velocity using a hot wire anemometer, and noise radiation has been also measured to estimate the fan noise. Characteristics of a box-type and a streamlined shroud have been examined by changing the immersion depth of cooling fans. Based upon the results, the best cooling fan is selected. Finally, the criterion to select the best cooling fan has been set up.

  • PDF

Mean Streamline Analysis for Performance Prediction of Cross- Flow Fans

  • Kim, Jae-Won;Oh, Hyoung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1428-1434
    • /
    • 2004
  • This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans.

Performance Characteristics of Automobile Cooling Fan according to Gap between Engine Block and Cooling Fan (엔진 블록과 냉각 팬의 간극에 따른 자동차 냉각 팬의 성능 특성 연구)

  • Yu, Byoung-Min;Ryu, Ki-Wahn;Ih, Kang-Duck;Lee, Myung-Han;Hong, Sung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.92-97
    • /
    • 2009
  • The performance of cooling fan is affected by many peripheral parts, such as radiator, condenser, engine block and etc. Higher power has been requested in more confined automobile engine room. Thus, cooling performance becomes very important to remove the heat generated from the automobile engine more efficiently. In this paper, the performance of cooling fan including effects of engine block is investigated by using a fan tester based on the ASHRAE and the AMCA standards. A flow rate - gap distance curves and a flow rate - engine block constant curves are obtained from this study.

  • PDF

Development of an axial flow fan for a refrigerator by in-house design system (팬 설계 시스템에 의한 냉장고용 축류팬 개발)

  • 최동규;최원석;박성관
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.85-92
    • /
    • 1997
  • An axial flow fan design system has been made by integrating the self-developed programs and I-DEAS. By using the system, an axial flow fan was designed, manufactured and verified through the wind tunnel experiments in coorperation with a refrigerator appliance division. It has been shown that the optimal design without the ambiguity of the design parameters can be possible by the three-dimensional flow simulations using a self-developed CID code, FANS-3D. (Flow Analysis code using Navier Stokes aguations in Three-Dimensional curvilinear coordinates). By virtue of the fluency of the data flow, an optimally designed fan which satisfies design conditions can be selected in a short time and less cost. The manufacturing processes of a Mock-up and an injection molding die have been automated through the self-made interface programs which connnect from the start to the end. It has been shown that the newly developed fan by this system has a superior performance characteristics to an existing fan.

  • PDF

Experimental Study on the Aerodynamic Performance Characteristics for Various Design Factors in the Maximum Flowrate Range of a Cross-Flow Fan (관류홴의 최대유량역에서 설계인자 변화에 따른 공력성능 특성에 관한 실험적 연구)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.44-49
    • /
    • 2005
  • The aerodynamic performance of an indoor room air-conditioner using a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this study is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance in the maximum flowrate range of a cross-flow fan. The design factors considered in this study are a rear-guider clearance, a stabilizer cutoff clearance, and a stabilizer setup angle, respectively. Aerodynamic performances including maximum flowrate and power show the biggest magnitude distribution in the case of $45^{\circ}$, the stabilizer setup angle as well as nearly similar magnitude distribution regardless of the stabilizer cutoff clearances. Moreover, the more a rear-guider clearance increases, the more the magnitude of maximum flowrate and power increases.

  • PDF

Performance Improvement of a Vacuum Cleaner by CFD Analysis around Motor (진공청소기 흡입효율 개선을 위한 모터 주위의 유동해석)

  • Park, J.W.;Ki, M.C.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.522-525
    • /
    • 2008
  • A vacuum cleaner is the widely used home equipment. However, it has a trouble with too much power consumption. Most losses occur at the centrifugal fan. To remedy this trouble the investigation of motor, which is the main component of vacuum cleaner, is required. The flow characteristics around the high-speed rotating centrifugal fan which is influenced by the very low inlet pressure is quite different from a commonly used fan. Hence it is quite difficult to analyze the flow by the experimental means or by the numerical simulation. In this research, it is aimed to improve the air-suction performance of a vacuum cleaner through the flow analysis around a motor. The efficiency of the centrifugal fan is affected by blade shape, blade number, blade pitch, etc. The influence of the shape of impeller on the flow is investigated in this study. The flow around the centrifugal fan is simulated by applying the moving mesh. To verify the validity of the computation results, the air flow rate and the pressure field to the cleaner is compared with the experimental data. All simulations are performed by using commercial code SC/Tetra. The calculated results show good agreement with the experimental ones and it is believed to be promising to use computational simulation in the improvement of the vacuum cleaner performance.

  • PDF