• Title/Summary/Keyword: Fan failure

Search Result 81, Processing Time 0.033 seconds

Deformability models for flexural-shear failure of limited ductility (휨-전단 파괴의 한정 연성도 모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • Deformability of RC members in shear after flexural yielding is limited and controlled by governing failure modes and material strength. Shear strength of members in D-regions has been explained by a direct load path (direct strut or arch action) and indirect load path (fan action or truss action). Indirect load path including truss action and fan action rely on bond along tension ties. Generally, superposition of two actions results in total shear strength when shear failure modes control. The ultimate deformation depends on controlling failure modes and thereby, their force transfer patterns. Proposed models are capable of explaining of limited deformability of RC members in D-regions.

  • PDF

Influence of Shear and Bond on Deformation Capacity of RC Beams (보의 변형능력에 미치는 전단과 부착응력의 영향)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.366-369
    • /
    • 2006
  • Deformability of RC members in shear is controlled by governing failure modes and material strength. Shear strength of members in D-regions has been explained by a direct load path (direct strut or arch action) and indirect load path (fan action or truss action). Indirect load path including truss action and fan action rely on bond along tension ties. Generally, superposition of two actions results in total shear strength when shear failure modes control. The ultimate deformation depends on controlling failure modes and thereby, their force transfer patterns. Proposed models are capable of explaining of limited deformability of RC members in D-regions.

  • PDF

Improvement of the Heat Resistance Reliability of an Axial Smoke Exhaust Fan (배연용 축류팬의 내열 신뢰성 향상)

  • Hur, Jin-Huek;Heo, Ki-Moo;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.656-662
    • /
    • 2009
  • In this paper, the heat resistance reliability of an axial smoke exhaust fan was investigated. An axial smoke exhaust fan should be capable of operating at $250^{\circ}C$ for 2 hours. The heat resistance reliability was evaluated by the heat resistance reliability test. A B10 life with a 90% confidence level was estimated to be about 48 minute. The failure occurred in the motor due to high temperature. The main failure mechanisms of the motor were melting of bond and insulating paper and burning of insulating materials in the coil. The heat resistance reliability was improved by changing the way to unite the core and the coil and by replacing the insulating paper and the insulating materials of the coil. A B10 life with a 90% confidence level of a modified axial smoke exhaust fan was estimated to be over 120 minute.

Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade (블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화)

  • Choi ByeongKeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

Heat and Flow Analysis for Cooling Fan for an Optical Archive System (광학식 대용량 정보저장장치의 냉각용 펜의 열유동 해석)

  • Kim, Jae Hoo;Rhim, Yoon Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • An archive system is designed to store data for a long time without loss. However, many important factors such as temperature, dust, vibration, and humidity must be considered to design a successful archive system. Read/write devices, for example optical disk drives(ODDs), in an archive system generate heat while they are in operation. Fans are usually used to remove heat but the air flow accompanies dust into the system result in system failure. In this study, an archive system with six ODDs is chosen as an analysis model and flow together with temperature distributions are computed using a CFD simulation package. Flow analysis is focused on four cooling fans at the rear panel and temperature distribution is studied for various cases of fan operation. From the temperature point of view, fans give significant effects on $4^{th}$ to $6^{th}$ ODDs compared to the $1^{st}$ to $3^{rd}$ ODDs. Also, it is noticed which fan is the most important as far as cooling is concerned.

Structure and Vibration Analyses of Low Speed Contra-Rotating Fan Stage with High Aspect Ratio

  • Sah, Supen Kumar;Ghosh, Anup;Mistry, Chetan S
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Contra-rotating fan is comprised of two rotors which are rotating in the opposite direction. The fan stages are named rotor-1 and rotor-2. Benefits from the use of contra rotation are in terms of better efficiency and improved thrust to weight ratio. Failure of contra-rotating fan stage blade in-service results in safety risks, repair costs, and revenue losses. This paper focuses on the vibration analysis and one way fluid-structure interaction of high aspect ratio, low speed contrarotating fan rotors. Modal analysis and modal pre-stress analysis of contra-rotating fan rotors were carried out to calculate the natural frequencies, One way fluid-structure interaction (FSI) was carried out where the computational analysis of the blades was performed using ANSYS CFX. The boundary conditions for CFD analysis were considered from the actual experimental velocity flow field at the inlet and pressure outlet. Based on the results obtained from the CFD analysis, the structural analysis such as deformation and Von-Misses stresses was carried out by using the finite element method (FEM) with ANSYS. The results provide necessary guidelines for the safe running of the contra-rotating fan. The analysis also will be helpful to understand the change of flow behavior due to a rotor deformation.

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test (가속수명시험에 의한 고속팬용 밀폐구조형 BLDC 모터의 열신뢰성 분석)

  • Lee Tae-Gu;Moon Jong-Sun;Yoo Hoseon;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this paper, thermal reliability of a closed type BLDC (Brushless DC) motor for high speed axial fan was analyzed by the accelerated life test. The closed type BLDC (Model No. MB1-8855-J01) motor was controlled by PCB module, which was composed of various electrical components. The failure of the closed type BLDC motor happened in PCB module due to high temperature. Failure mechanism of the closed type BLDC motor appears to be electrolyte dry out of capacitor. The accelerate life test was performed in temperature stress of $85^{\circ}C\;and\;105^{\circ}C$, respectively The failure data from the accelerated life test were analyzed and the life in each stress level was estimated with 960h and 261 h. At last, both life expression according to operating temperature of PCB module and life of the closed type BLBC motor in normal condition $(50^{\circ}C)$ were suggested.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

A Study on the Superheat Control of a Tandem-type Airconditioner by Using a Variable Speed Outdoor Fan (변속실외기펜을 사용한 텐텀형냉방기의 과열도제어에 관한 연구)

  • Kim, Jae-Hyun;Han, Do-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.474-479
    • /
    • 2005
  • For the safe operation of an air conditioner, the liquid car η 'over to compressors should be minimized and compressors should be operated in the specified region of suction and discharge pressures recommended by compressor manufactures. In this study, a capillary assisted tandem-type airconditioner was considered. A variable speed outdoor fan was used to control operating points of the system. Test results showed the possibilities to move system operating points to the safe region by controlling the speed of an outdoor fan.

  • PDF

Development of high performance and efficiency plastic axial fan by proximity cooling mold to minimize warpage (휨 변경 최소화 근접 냉각 금형을 통한 고성능 고효율 플라스틱 축류팬 개발)

  • Shin, Kwang-Ho;Kim, Mi-ae;Chea, Bo-Hae;Park, Sang-Wook;Kim, Yong-Dae
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • The cooling unit of the industrial showcase consists of a compressor, a condenser and an evaporator. An axial fan is used to circulate the air to improve the efficiency of the heat exchanger. In the past, aluminum fans have been used, which have problems such as low performance, efficiency, high failure rate, and high noise. This study is to develop high performance, high efficiency plastic fan replacing aluminum fan. A major factor in determining the performance and noise of an axial fan is the angle and cross-sectional shape of the blade, which is suitable for raising the lift force, thereby controlling the vortex, which is the main cause of noise and performance degradation. In order to produce a high efficiency injection molded fan, it is necessary to develop a mold that minimizes the deformation of the injection process for the designed shape. In this study, we developed a high efficiency, low noise plastic injection fan with more than 11% performance improvement and noise reduction compared to conventional aluminum fan.