• Title/Summary/Keyword: Fan Power

Search Result 491, Processing Time 0.024 seconds

Internal Flow Condition of High Power Contra-Rotating Small-Sized Axial Fan

  • Shigemitsu, Toru;Fukutomi, Junichiro;Agawa, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • Data centers have been built with spread of cloud computing. Further, electric power consumption of it is growing rapidly. High power cooling small-sized fans; high pressure and large flow rate small-sized fan, are used for servers in the data centers and there is a strong demand to increase power of it because of increase of quantity of heat from the servers. Contra-rotating rotors have been adopted for some of high power cooling fans to meet the demand for high power. There is a limitation of space for servers and geometrical restriction for cooling fans because spokes to support fan motors, electrical power cables and so on should be installed in the cooling fans. It is important to clarify complicated internal flow condition and influence of a geometric shape of the cooling fans on performance to achieve high performance of the cooling fans. In the present paper, the performance and the flow condition of the high power contra-rotating small-sized axial fan with a 40mm square casing are shown by experimental and numerical results. Furthermore, influence of the geometrical shape of the small-sized cooling fan on the internal flow condition is clarified and design guideline to improve the performance is discussed.

Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower (입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석)

  • Nguyen, Minh Phu;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • In order to provide effective operating conditions for the fan in a wet cooling tower with film fill, a new program to search for the minimum fan power was developed using a model of the optimal total annual cost of the tower based on Merkel's model. In addition, a type of design map for a cooling tower was also developed. The inlet water temperature and heat load were considered as key parameters. The present program was first validated using several typical examples. The results showed that for a given heat load, a three-dimensional graph of the fan power (z-axis), mass flux of air (x-axis, minimum fan power), and inlet water temperature (y-axis, maximum of minimum fan power) showed a saddle configuration. The minimum fan power increased as the heat load increased. The conventionally known fact that the most effective cooling tower operation coincides with a high inlet water temperature and low air flow rate can be replaced by the statement that there exists an optimum mass flux of air corresponding to a minimum fan power for a given inlet water temperature, regardless of the heat load.

Study on Vibration Characteristics after Applying Variable Speed Control to Constant Speed Fans used in a Power Plant (발전소 통풍계통의 가변속 적용 후 진동특성에 관한 연구)

  • Cho, C.W.;Song, O.S.;Yang, K.H.;Kim, G.Y.;Cho, S.T.;Moon, H.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • In this paper, vibration characteristics after applying variable speed control to fans with a rated speed used in a power plant are studied by performing experiments and analyzing finite element models. Then the campbell diagram is presented to verify the reason of the abnormal vibration measured from fan structure during variable operation of Forced Draft Fan & Induced Draft Fan. According to results, it is found that amplitude of acceleration increases abruptly when a 2X harmonic component meets the natural frequency of fan rotor. Therefore it is very important thing that investigate exactly dynamic characteristics for the rotor at variable speed zone before applying variable speed control to a rotor with a rated speed.

  • PDF

Experimental Study on Air Flow Characteristics of Axial Dual-blade Fan (축류형 이중 블레이드 팬의 공기 유동 특성에 관한 실험적 연구)

  • Kim, Hae-Ji;Lee, Yong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2014
  • To ventilate indoor spaces, axial single-blade fans are widely used in various areas, such as schools, houses, offices, and restaurants. Recently, axial single-blade fans were developed to realize energy efficiency and noise reduction improvements. Here, an experimental study of the air flow characteristics of an axial dual-blade fan is conducted. The characteristics of the axial dual-blade fan were tested via an air flow analysis and with prototypes. For the performance of the fan, the flow rate, power consumption, and noise were evaluated. The result showed that the axial dual-blade fan uses less power and produces less noise in comparison with an axial single-blade fan.

Evaluation and CFD Modelling of Flow behind Livestock Ventilation Fan for Small-Scale Wind Power Generation (축사 환기팬 후류의 풍에너지 평가 및 기류 형상의 전산유체역학 모델링)

  • Hong, Se-Woon;Lee, In-Bok;Seo, Il-Hwan;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Hwang, Hyun-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.79-89
    • /
    • 2012
  • The objectives of this paper were to evaluate the wind flow behind the livestock ventilation fan for small-scale wind power generation and to make flow profiles of imaginary ventilation fan for future simulation works. The field experiments using typical 50-inch fan indicated that the wind flow behind the ventilation fan had a good possibility of power generation with its high and steady wind speeds up to a distance of 2 m. The expected electricity yield was almost 101~369 W with a small (0.8 m radius) wind turbine. The decline of ventilation fan performance caused by the obstacle was also not significant with about 4 % from a distance of 2 m. The flow profiles for the computational fluid dynamics (CFD) simulation was created by combining the direction vectors analyzed from tuft visualization test and the flow predicted by the rotating fan modeling. The flow profiles are expected to provide an efficient saving of computational time and cost to design a better wind turbine system in future works.

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.

Experimental Study on the Aerodynamic Performance of Double Inlet Sirocco Fan for a Package Air Conditioner (PAC용 양흡입 시로코홴의 공력성능에 관한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • The aerodynamic performance of double inlet sirocco fan is strongly dependent upon the design factors of impeller and scroll. In this paper, the change of scroll size was adopted to investigate the aerodynamic performances of double inlet sirocco fan and indoor PAC. Especially, a scroll expansion angle and a cut-off clearance ratio were considered to change the scroll size. In addition, the installation depth between double inlet sirocco fan and indoor PAC was considered. As a result, the total pressure efficiency of double inlet sirocco fan shows about 62%~73% according to the change of scroll expansion angles. Moreover, the flowrate performance of indoor PAC is the best at the condition of a scroll expansion angle of 8°, an installation depth of 15 mm and a cut-off clearance ratio of 8%.

Apparatus for Measuring Fan Stall of Boiler for Power Station (화력발전용 보일러의 맥동 측정 장치)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1681-1684
    • /
    • 2014
  • In this paper, in the ventilation system of coal-fired power boilers can measure in real time the fan stall mechanism is all about. The fan stall guard system of boiler airing system of the class of 500MW capacity to protect fan. But because confidence is loosed and operation is influenced by frequent fault of fan stall guard system, confidence is improved by substituting DCS Logic for it.

Experimental Study on the Aerodynamic Performance Characteristics for Various Design Factors in the Maximum Flowrate Range of a Cross-Flow Fan (관류홴의 최대유량역에서 설계인자 변화에 따른 공력성능 특성에 관한 실험적 연구)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.44-49
    • /
    • 2005
  • The aerodynamic performance of an indoor room air-conditioner using a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this study is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance in the maximum flowrate range of a cross-flow fan. The design factors considered in this study are a rear-guider clearance, a stabilizer cutoff clearance, and a stabilizer setup angle, respectively. Aerodynamic performances including maximum flowrate and power show the biggest magnitude distribution in the case of $45^{\circ}$, the stabilizer setup angle as well as nearly similar magnitude distribution regardless of the stabilizer cutoff clearances. Moreover, the more a rear-guider clearance increases, the more the magnitude of maximum flowrate and power increases.

  • PDF