• 제목/요약/키워드: Fan Efficiency

검색결과 441건 처리시간 0.027초

터빈 냉각설계를 위한 터보팬 엔진의 성능해석 (Performance Analysis of Turbofan Engine for Turbine Cooling Design)

  • 김춘택;이동호;차봉준
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

Design and Analysis of a Segmental Rotor Type 12/8 Switched Reluctance Motor

  • Zhang, Hongtao;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.866-873
    • /
    • 2014
  • In this paper, a novel 12/8 segmental rotor type switched reluctance motor (SRM) is proposed for cooling fan applications. Unlike conventional structures, the rotor of the proposed structure is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. Moreover, in this structure, short flux paths are taken and no flux reversion exists in the stator. While the auxiliary poles are not wound by the windings, which only provide the flux return path. When compared with the conventional SRM, the proposed structure increases the electrical utilization of the machine and decreases the core losses, which may lead to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get the static and dynamic characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

에너지 절약용 냉방사이클 (Cooling Cycle for Energy Saving)

  • 이흥주;김용구
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.116-127
    • /
    • 1989
  • Research on reheating cooling cycle and its practical application have been made to prevent unequalized distribution of temperature and humidity of room due to lack of supply air volume and dewdrops on supply diffusers to be taken place as a result of lower temperature of supply air than that of dew point of room air in cooling cycle of constant air volume, single duct, single zone and draw-through fan type. In view of the fact that human body is insensitive to humidity, it is possible not only to construct the complete non-reheating cooling cycle by increasing the humidity point allowable with the deduction of occupant's sense of pleasantness minimizing, but also to get cooling cycle decreasing the reheating quantity if the humidity exceeds the point allowable. In addition, it is possible to save maximum 8% in electric energy for cooling in cooling system by constructing non-reheating cooling cycle instead of reheating cooling cycle and by increasing the relative humidity of room from 50% to 65% in case efficiency and air pressure of cooling system are low. It is also possible to get an optimum cooling cycle by determining the room humidity in consideration of pleasantness of occupants and conservation rate of electric energy if the cooling capacity, efficiency and total pressure of cooling equipment are fixed.

  • PDF

Research and Optimization of Four Serpentine-Wave Flow Fields in PEMFC

  • Fayi Yan;He Lu;Jian Yao;Xuejian Pei;Xiang Fan
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.373-387
    • /
    • 2024
  • The layout of the cathode flow field largely determines the net output power of the proton exchange membrane fuel cell (PEMFC). To make the normal mass transfer effect best, the longitudinal channel was waved based on four serpentine flow channels, and the effects of sag depth and longitudinal channel width on the output efficiency of the cell were explored. The results show that the wave channel design systematically enhances the forced convection between adjacent channels, which can prevent a large zone of oxygen starvation zone at the outlet of the channel. The increase of the normal velocity in the gas transmission process will inevitably induce a significant enhancement of the mass transfer effect and obtain a higher current density in the reaction zone. For the longitudinal channel width, it is found that increasing its size in the effective range can greatly reduce the channel pressure drop without reducing the output power, thereby improving the overall efficiency. When the sag depth and longitudinal channel width gradient are 0.6 mm and 0.2 mm respectively, PEMFC can obtain the best comprehensive performance.

하이브리드 굴삭기 연비 개선 연구 (Improving Fuel Efficiency of a Hybrid Excavator)

  • 조성우;유승진;박철규
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.211-217
    • /
    • 2015
  • 환경 문제 및 화석연료 고갈에 대한 관심으로 인하여 배기가스에 대한 규제는 나날이 엄격해지고 있으며 높은 연비에 대한 수요는 지속적으로 증가하고 있다. 이러한 시대적 요구를 뒷받침하기 위하여 저배기-고연비가 특징인 하이브리드 굴삭기가 현실적인 대안으로서 각광받고 있으며 지속적으로 연구되고 있다. 본 연구에서는 선회 구동 전동기, 엔진보조 전동기, 울트라 캐패시터, 전력변환장치를 중형 굴삭기에 탑재한 복합형 하이브리드 굴삭기를 개발하였으며, 일반적인 복합형 하이브리드 굴삭기의 연비개선요소(선회 구동 에너지 회생, 엔진 작동 속도 변경)외에 추가적으로 적용된 연비개선 방법론들에 대하여 다루고 있다. 본 방법론들을 적용함으로써 연비와 운전 조작성을 동시에 개선할 수 있었다.

터널화재시 부분배연설비에 의한 배연효율 향상에 관한 연구 (Study of the Smoke Extraction Efficiency Improvement by the Partial Smoke Extraction System in Tunnel Fire)

  • 유용호;이의주;신현준;신한철;윤영훈
    • 한국터널지하공간학회 논문집
    • /
    • 제8권1호
    • /
    • pp.53-63
    • /
    • 2006
  • 본 연구는 프라우드 상사와 등온기체모델을 적용한 축소모형실험을 실시하여, 터널화재시 연기의 거동과 부분배연설비의 배연효율을 분석함으로써 방재설비의 운영방안을 제시하고자 하였다. 실험 결과 터널 화재시 입계유속 이상의 제연 풍량이 유지 될 경우 부분 배연 갤러리의 배연효율은 그룹댐퍼와 균일댐퍼 모두 거의 유사하였다. 또한, 터널내 차량이 정체시 화재가 발생할 경우, 화재초기에는 화원 앞 뒤에 위치해있는 부분 배연 갤러리만을 열어 연키의 성총회률유지하면서 연층을 배연시키고 제트팬은 가동시키지 않고 이후 승객이 모두 대피할 수 있는 충분한 시간이 지난 후 제트팬을 함께 가동시켜 터널 내의 연기를 배출하도록 하며 교통 소통이 원활한 경우에는 터널의 제연설비를 가몽하여 연기의 후방전파를 차단하고 통시에 부분배연 설비를 가동할 것을 제안하였다.

  • PDF

교반 볼밀을 이용한 왕겨재의 건식 미세분쇄에 관한 연구 (Dry Fine Grinding of Rice Husk Ash using a Stirred Ball Mill)

  • 박승제;최연규;김명호;이종호
    • Journal of Biosystems Engineering
    • /
    • 제25권1호
    • /
    • pp.39-46
    • /
    • 2000
  • This work was conducted to study the operating characteristics of a grinding system designed to obtain fine rice husk ash powder. To find better utilizing of rice husk, a valuable by-product from rice production, once the rice husk was incinerated and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement manufacturing . The rice husk ash grinding system consisted of a high speed centrifugal fan for the preliminary coarse milling and a dry-type stirred ball mill for the subsequent fine grinding . Total grinding time 9 5, 15, 30, 45 min), impeller speed (250, 500, 750 rpm) , and mixed ratio (4.8, 7.9, 14.9) were three operating factors examined for the performance of a stirred ball mill used for the fine grinding of ash. With the stirred ball mill used in this study, the minimum attianable mean diameter of rice husk ash powder appeared to be 2 ${\mu}{\textrm}{m}$. During the find grinding, the difference in specific surface area of powder showed an increase and the grinding energy efficiency decreased with the increase in total grinding time, impeller speed ,and mixed ratio. For the operating conditions employed , the resulting mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of 1.79 --16.04${\mu}{\textrm}{m}$, 0.072-5.226kWh/kg, an d1.11-12.15$m^2$/Wh, respectively. Grinding time of 30 min , impeller speed of 750 rpm, and mixed ratio of 4.8 were chosen as the best operating conditions of the stirred ball mill for fine grinding . At these conditions, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughtput, and specific energy input were 2.73${\mu}{\textrm}{m}$, 3.95$m^2$/Wh, 0.25kg/h, and 1.22kWh/kg, respectively.

  • PDF

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • 제7권5호
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.