DOI QR코드

DOI QR Code

Research and Optimization of Four Serpentine-Wave Flow Fields in PEMFC

  • Fayi Yan (College of Mechanical and Electrical Engineering, Shandong Jianzhu University) ;
  • He Lu (College of Mechanical and Electrical Engineering, Shandong Jianzhu University) ;
  • Jian Yao (College of Mechanical and Electrical Engineering, Shandong Jianzhu University) ;
  • Xuejian Pei (College of Mechanical and Electrical Engineering, Shandong Jianzhu University) ;
  • Xiang Fan (College of Mechanical and Electrical Engineering, Shandong Jianzhu University)
  • Received : 2023.11.20
  • Accepted : 2024.03.10
  • Published : 2024.08.31

Abstract

The layout of the cathode flow field largely determines the net output power of the proton exchange membrane fuel cell (PEMFC). To make the normal mass transfer effect best, the longitudinal channel was waved based on four serpentine flow channels, and the effects of sag depth and longitudinal channel width on the output efficiency of the cell were explored. The results show that the wave channel design systematically enhances the forced convection between adjacent channels, which can prevent a large zone of oxygen starvation zone at the outlet of the channel. The increase of the normal velocity in the gas transmission process will inevitably induce a significant enhancement of the mass transfer effect and obtain a higher current density in the reaction zone. For the longitudinal channel width, it is found that increasing its size in the effective range can greatly reduce the channel pressure drop without reducing the output power, thereby improving the overall efficiency. When the sag depth and longitudinal channel width gradient are 0.6 mm and 0.2 mm respectively, PEMFC can obtain the best comprehensive performance.

Keywords

Acknowledgement

The authors thank the Shandong Province Major Science and Technology Innovation Project (2018CXGC0803) for funding!

References

  1. M. Percic, N. Vladimir, I. Jovanovic, and M. Korican, Appl. Energy, 2022, 309, 118463. 
  2. Y. Yang, X. Zhu, Q. Wang, D. Ye, R. Chen, and Q. Liao, Appl. Therm. Eng., 2022, 203, 117937. 
  3. X. Z. Heng, P. C. Wang, H. An, and G. Q. Liu, Novel design of anode flow field in proton exchange membrane fuel Cell (PEMFC), In: H. Guo, H. Ren, and A. Bandla (eds.), IRC-SET 2018, Springer, Singapore, 2019. 
  4. A. Mahdavi, A. A. Ranjbar, M. Gorji, and M. Rahimi-Esbo, Appl. Energy, 2018, 228, 656-666. 
  5. H. Pourrahmani, M. Siavashi, and M. Moghimi, Energy, 2019, 182, 443-459. 
  6. T. V. Reshetenko, G. Bender, K. Bethune, and R. Rocheleau, Electrochim. Acta, 2013, 88, 571-579. 
  7. T. Falaguerra, P. Munoz, and G. Correa, J. Electroanal. Chem., 2021, 880, 114820. 
  8. O. S. Ijaodola, Z. El-Hassan, E. Ogungbemi, F. N. Khatib, T. Wilberforce, J. Thompson, and A. G. Olabi, Energy, 2019, 179, 246-267. 
  9. Q. Deng, Y. Liu, Y. Zhou, W. Chen, Z. Shen, B. Chen, and Z. Tu, Int. J. Energy Res., 2022, 46(9), 12519-12529. 
  10. S. A. Atyabi, E. Afshari, E. Zohravi, and C. M. Udemu, Energy, 2021, 234, 121247. 
  11. D. K. Dang and B. Zhou, Int. J. Energy Res., 2021, 45(14), 20285-20301. 
  12. G. Zhang, B. Xie, Z. Bao, Z. Niu, and K. Jiao, Int. J. Energy Res., 2018, 42(15), 4697-4709. 
  13. I. Korkischko, B. S. Carmo, and F. C. Fonseca, Fuel Cells, 2017, 17(6), 809-815. 
  14. A. D. Santamaria, N. J. Cooper, M. K. Becton, and J. W. Park, Int. J. Hydrogen Energy, 2013, 38(36), 16253-16263. 
  15. N. J. Cooper, T. Smith, A. D. Santamaria, and J. W. Park, Int. J. Hydrogen Energy, 2016, 41(2), 1213-1223. 
  16. X. Chen, Y. Chen, Q. Liu, J. Xu, Q. Liu, W. Li, Y. Zhang, Z. Wan, and X. Wang, Energy Rep., 2021, 7, 336-347. 
  17. S. N. Ozdemira and I. Taymaz, Int. J. Environ. Sci. Technol., 2021, 18(11), 3581-3596. 
  18. Y. Wang, Z. Y. Sun, and L. Yang, Energy Convers. Manag., 2022, 252, 115077. 
  19. Y. Cai, D. Wu, J. Sun, and B. Chen, Energy, 2021, 222, 119951. 
  20. P. Dong, G. Xie, and M. Ni, Energy, 2020, 206, 117977. 
  21. B. R. Friess and M. Hoorfar, Int. J. Hydrogen Energy, 2012, 37(9), 7719-7729. 
  22. M. Liu, H. Huang, X. Li, X. Guo, T. Wang, and H. Lei, Int. J. Hydrogen Energy, 2021, 46(75), 37379-37392. 
  23. S. Shimpalee and J. W. Van Zee, Int. J. Hydrogen Energy, 2007, 32(7), 842-856. 
  24. T. Huang, W. Wang, Y. Yuan, J. Huang, X. Chen, J. Zhang, X. Kong, Y. Zhang, and Z. Wan, Energy Rep., 2021, 7, 1374-1384. 
  25. T. Chen, Y. Xiao, and T. Chen, Energy Procedia, 2012, 28, 134-139. 
  26. J. H. Dong and S. F. Liu, Appl. Mech. Mater., 2012, 151, 32-35. 
  27. Y. Jia, R. Zhu, B. Sunden, and G. Xie, Improved thermal uniformity by introducing tree-like flowing channels in a pemfc flow-field plate, In: Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 6: Energy, Tampa, Florida, USA, November 3-9, 2017. 
  28. D. K. Dang and B. Zhou, Int. J. Green Energy, 2022, 19(6), 577-591. 
  29. L. Zhang and Z. Shi, Alex. Eng. J., 2021, 60(1), 421-433. 
  30. Z. Liao, L. Wei, A. M. Dafalla, J. Guo, and F. Jiang, Int. J. Heat Mass Transf., 2021, 181, 121900. 
  31. P. Lin, H. Wang, G. Wang, J. Li, and J. Sun, Int. J. Hydrogen Energy, 2022, 47(8), 5541-5552. 
  32. X. Chen, Z. Yu, X. Wang, W. Li, Y. Chen, C. Jin, G. Gong, and Z. Wan, J. Energy Eng., 2021, 147(1), 04020080. 
  33. L. Rostami, P. M. G. Nejad, and A. Vatani, Energy, 2016, 97, 400-410. 
  34. M. Z. Chowdhury and B. Timurkutluk, Energy, 2018, 161, 104-117. 
  35. J. Yao, F. Y. Yan, and X. J. Pei, Chem. Pap., 2022, 77, 935-946. 
  36. F. Yan, J. Yao, and X. Pei, Int. J. Electrochem. Sci., 2022, 17(7), 220721. 
  37. M. Z. Chowdhury and Y. E. Akansu, Int. J. Hydrogen Energy, 2017, 42(40), 25686-25694. 
  38. Z. Zongxi, F. Xiang, L. Wenhao, Y. Jian, and S. Zhike, Ionics, 2023, 29, 4125-4145. 
  39. J. Yao, F. Yan, and X. Pei, Fluid Dyn. Mater. Process., 2023, 19(6), 1425-1445. 
  40. Q. Xie, Y. Lian, and M. Zheng, Int. J. Electrochem. Sci., 2021, 16(10), 211057. 
  41. X. Luo, G. Lau, M. Tesfaye, C. R. Arthurs, I. Cordova, C. Wang, M. Yandrasits, and A. Kusoglu, J. Electrochem. Soc., 2021, 168(10), 104517. 
  42. X.-Z. Yuan, S. Zhang, S. Ban, C. Huang, H. Wang, V. Singara, A. Haug, K. A. Friedrich, and R. Hiesgen, J. Power Sources, 2012, 205, 324-334. 
  43. M. K. Vijayakrishnan, K. Palaniswamy, J. Ramasamy, T. Kumaresan, K. Manoharan, T. K. R. Rajagopal, T. Maiyalagan, V. R. Jothi, and S.-C. Yi, Int. J. Hydrogen Energy, 2020, 45(13), 7848-7862. 
  44. P. C. Okonkwo, I. B. Belgacem, W. Emori, and P. C. Uzoma, Int. J. Hydrogen Energy, 2021, 46(55), 27956-27973. 
  45. S. Li, J. Yuan, M. Andersson, G. Xie, and B. Sunden, J. Electrochem. En. Conv. Stor., 2017, 14(3), 031007. 
  46. H. R. Ashorynejad, K. Javaherdeh, and H. E. Van den Akker, Int. J. Hydrogen Energy, 2016, 41(32), 14239-14251. 
  47. A.-U.-H. Najmi, I. S. Anyanwu, X. Xie, Z. Liu, and K. Jiao, Energy, 2021, 217, 119313. 
  48. H. Hu, X. Xu, N. Mei, and G. Tong, Ionics, 2020, 26, 6245-6253. 
  49. L. S. Freire, E. Antolini, M. Linardi, E. I. Santiago, and R. R. Passos, Int. J. Hydrogen Energy, 2014, 39(23), 12052-12060. 
  50. Y. Lian, Q. Xie, and M. Zheng, J. New Mater. Electrochem. Syst., 2020, 23(4), 262-268. 
  51. A. Nishimura, K. Toyoda, Y. Kojima, S. Ito, and E. Hu, Energies, 2021, 14(24), 8256.