• 제목/요약/키워드: False Positive data

검색결과 241건 처리시간 0.021초

An Adaptive Watermark Detection Algorithm for Vector Geographic Data

  • Wang, Yingying;Yang, Chengsong;Ren, Na;Zhu, Changqing;Rui, Ting;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.323-343
    • /
    • 2020
  • With the rapid development of computer and communication techniques, copyright protection of vector geographic data has attracted considerable research attention because of the high cost of such data. A novel adaptive watermark detection algorithm is proposed for vector geographic data that can be used to qualitatively analyze the robustness of watermarks against data addition attacks. First, a watermark was embedded into the vertex coordinates based on coordinate mapping and quantization. Second, the adaptive watermark detection model, which is capable of calculating the detection threshold, false positive error (FPE) and false negative error (FNE), was established, and the characteristics of the adaptive watermark detection algorithm were analyzed. Finally, experiments were conducted on several real-world vector maps to show the usability and robustness of the proposed algorithm.

네트워크 트래픽 데이터의 희소 클래스 분류 문제 해결을 위한 전처리 연구 (A Pre-processing Study to Solve the Problem of Rare Class Classification of Network Traffic Data)

  • 류경준;신동일;신동규;박정찬;김진국
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.411-418
    • /
    • 2020
  • 정보보안을 위한 IDS(Intrusion Detection Systems)는 통상적으로 서명기반(signature based) 침입탐지시스템과 이상기반(anomaly-based) 침입 탐지시스템으로 분류한다. 이 중에서도 네트워크에서 발생하는 트래픽 데이터를 기계학습으로 분석하는 이상기반 IDS 연구가 활발하게 진행됐다. 본 논문에서는 공격 유형 학습에 사용되는 데이터에 존재하는 희소 클래스 문제로 인한 성능 저하를 해결하기 위한 전처리 방안에 대해 연구했다. 희소 클래스(Rare Class)와 준 희소 클래스(Semi Rare Class)를 기준으로 데이터를 재구성하여 기계학습의 분류 성능의 개선에 대하여 실험했다. 재구성된 3종의 데이터 세트에 대하여 Wrapper와 Filter 방식을 연이어 적용하는 하이브리드 특징 선택을 수행한 이후에 Quantile Scaler로 정규화를 처리하여 전처리를 완료한다. 준비된 데이터는 DNN(Deep Neural Network) 모델로 학습한 후 TP(True Positive)와 FN(False Negative)를 기준으로 분류 성능을 평가했다. 이 연구를 통해 3종류의 데이터 세트에서 분류 성능이 모두 개선되는 결과를 얻었다.

신생아의 출생 체중에 따른 혈액 여과지 17alpha-hydroxyprogesterone의 농도 분석 및 판정 기준 조정 (Analysis and Cut-off Adjustment of Dried Blood Spot 17alpha-hydroxyprogesterone Concentration by Birth Weight)

  • 박승만;권애린;양송현;박은아;최재황;황미정;남현경;이은희
    • 대한유전성대사질환학회지
    • /
    • 제14권2호
    • /
    • pp.150-155
    • /
    • 2014
  • The measurement of $17{\alpha}$-hydroxyprogesterone ($17{\alpha}$-OHP) in a dried blood spot on filter paper is an important for screening of congenital adrenal hyperplasia (CAH). Since high levels of $17{\alpha}$-OHP are frequently observed in premature infants without congenital adrenal hyperplasia, we evaluated cuts-off based on birth weight and performed validation. Birth weight and $17{\alpha}$-OHP concentration data of 292,204 newborn screening subjects in Greencross labopratories were analyzed. The cut-off values based on birth weight were newly evaluated and validated with the original data. The mean $17{\alpha}$-OHP concentration were 7.25 ng/mL in very low birth weight (VLBW) group, 4.02 ng/mL in low birth weight (LBW) group, 2.53 g/mL in normal birth weight (NBW) group, and 2.24 ng/mL in heavy birth weight (HBW) group. The cut-offs for CAH were decided as follows: 21.12 ng/mL for VLBW and LBW groups and 11.14 ng/mL for NBW and HBW groups. When applied new cut-offs for original data, positive rates in VLBW and LBW groups were decreased and positive rates in NBW and HBW groups were increased. The cut-offs based on birth weight should be used in the screening for CAH. We believe that our new cut-off reduce the false positive rate and false negative rate and our experience for cut-off set up and validation will be helpful for other laboratories doing newborn screening test.

오분류된 이진자료에서 Agresti-Coull유형의 신뢰구간에 대한 이론적 고찰 (Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data)

  • 이승천
    • Communications for Statistical Applications and Methods
    • /
    • 제18권4호
    • /
    • pp.445-455
    • /
    • 2011
  • 표본추출에서 오분류된 이진자료는 흔히 발생될 수 있는 현실적인 문제이지만 통계적 방법론은 상대적으로 제한적이라고 할 수 있다. 특히, 모비율의 구간추정 문제는 고전적인 Wald 방법에 의존하고 있었다. 그러나 최근 이승천과 최병수 (2009)에서 Agresti-Coull 방법을 적용하고 새로운 구간추정 방법을 제시하였으며, 수치적인 방법에 의해 Agresti-Coull 신뢰구간의 효율성을 주장하였다. 본 연구에서는 오분류된 이진자료에 대한 베이지안 모형을 다루었으며, 베이지안 모형이 Agresti-Coull 신뢰구간의 이론적 배경이 될 수 있는지 살펴 보았다.

The Role of Artificial Observations in Testing for the Difference of Proportions in Misclassified Binary Data

  • Lee, Seung-Chun
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.513-520
    • /
    • 2012
  • An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The performance of the test is compared with the likelihood-based tests. It is shown that the Agresti-Coull test has many desirable properties in that it can approximate the nominal significance level with compatible power performance.

Confidence Intervals for the Difference of Binomial Proportions in Two Doubly Sampled Data

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.309-318
    • /
    • 2010
  • The construction of asymptotic confidence intervals is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The coverage behaviors of several likelihood based confidence intervals and a Bayesian confidence interval are examined. It is shown that a hierarchical Bayesian approach gives a confidence interval with good frequentist properties. Confidence interval based on the Rao score is also shown to have good performance in terms of coverage probability. However, the Wald confidence interval covers true value less often than nominal level.

지능형 위협인지 및 능동적 탐지대응을 위한 Snort 침입탐지규칙 연구 (Study of Snort Intrusion Detection Rules for Recognition of Intelligent Threats and Response of Active Detection)

  • 한동희;이상진
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1043-1057
    • /
    • 2015
  • 지능형 위협을 빠르게 인지하고 능동적으로 탐지 및 대응하기 위해 주요 공공단체 및 민간기관에서는 침입탐지시스템(IDS)을 관리 운영하고 있으며, 이는 공격의 검출 및 탐지에 매우 중요한 역할을 한다. 그러나 IDS 경보의 대부분은 오탐(false positive)을 생성하는 문제가 있다. 또한, 알려지지 않은 악성코드를 탐지하고 사전에 위협을 인지 대응하기 위해서 APT대응솔루션이나 행위기반체계를 도입 운영하고 있다. 이는 가상기술을 이용해 악성코드를 직접실행하고 가상환경에서 이상행위를 탐지하거나 또는 다른방식으로 알려지지 않은 공격을 탐지한다. 그러나 이 또한 가상환경 회피, 트래픽 전수조사에 대한 성능적 문제, 정책오류 등의 약점 등이 존재한다. 이에 따라 결과적으로 효과적인 침입탐지를 위해서는 보안관제 고도화가 매우 중요하다. 본 논문에서는 보안관제 고도화의 한가지 방안으로 침입탐지시스템의 주요 단점인 오탐(false positive)을 줄이는 방안에 대해 논한다. G기관의 경험적 데이터를 근거로 실험을 수행한 결과 세 가지 유형 11가지 규칙을 도출하였다. 이 규칙을 준수하여 테스트한 결과 전반적인 오탐율이 30%~50% 이상 줄어들고 성능이 30% 이상 향상됨을 검증하였다.

기계학습을 이용한 소스코드 정적 분석 개선에 관한 연구 (A Study on the Improvement of Source Code Static Analysis Using Machine Learning)

  • 박양환;최진영
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1131-1139
    • /
    • 2020
  • 소스코드에 대한 정적 분석은 광범위한 소스코드에 대해서 잔존하는 보안약점을 찾는 것으로 정적 분석 도구를 활용하여 점검을 하고, 그 결과에 대해서 정적 분석 전문가가 정탐 및 오탐 분석을 한다. 이 과정에서 분석양이 많고 오탐의 비율이 높아 많은 시간과 노력이 들어가게 되어 효율적으로 분석하는 방안이 요구되고 있다. 또한 전문가들은 정·오탐 분석을 할 때 결함이 발생한 라인의 소스코드만 보고 분석을 하는 경우는 드물다. 결함의 유형에 따라서 주변의 소스코드를 같이 분석하고 최종 분석 결과를 내리게 된다. 이러한 정적 분석 도구를 사용하여 전문가가 정·오탐을 판별하는 어려움을 해결하기 위해서 본 논문에서는 정적 분석 도구가 찾은 보안약점이 정탐인지 아닌지를 전문가가 아닌 인공지능을 통해 판별하는 방법을 제안한다. 또한 이러한 기계학습에 사용되는 학습 데이터(결함주변 소스코드)의 크기가 성능에 어떤 영향을 미치는지 실험을 통해 최적의 크기를 확인하였다. 이 결과를 통해 정적 분석 후 정·오탐을 분류하는 정적 분석 전문가의 업무에 도움을 줄 것으로 기대한다.

나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계 (A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining)

  • 이병관;정은희
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.158-163
    • /
    • 2012
  • 본 논문에서 나이브 베이지안 알고리즘, 데이터 마이닝, Fuzzy logic을 이용하여 이상 공격과 오용 공격을 탐지하는 하이브리드 침입탐지시스템인 FHIDS(Fuzzy logic based Hybrid Intrusion Detection System)을 설계하였다. 본 논문에서 설계한 FHIDS의 NB-AAD(Naive Bayesian based Anomaly Attack Detection)기법은 나이브 베이지안 알고리즘을 이용해 이상 공격을 탐지하고, DM-MAD(Data Mining based Misuse Attack Detection)기법은 데이터 마이닝 알고리즘을 이용하여 패킷들의 연관 규칙을 분석하여 새로운 규칙기반 패턴을 생성하거나 변형된 규칙 기반 패턴을 추출함으로써, 새로운 공격이나 변형된 공격을 탐지한다. 그리고 FLD(Fuzzy Logic based Decision)은 NB-AAD과 DM-MAD의 결과를 이용하여 정상인지 공격인지를 판별한다. 즉, FHIDS는 이상과 오용공격을 탐지 가능하며 False Positive 비율을 감소시키고, 변형 공격 탐지율을 개선한 하이브리드 공격탐지시스템이다.

Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘 (Anomaly detection and attack type classification mechanism using Extra Tree and ANN)

  • 김민규;한명묵
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.79-85
    • /
    • 2022
  • 이상 탐지는 일반적인 사용자들의 데이터 집합 속에서 비정상적인 데이터 흐름을 파악하여 미리 차단하는 방법이다. 기존에 알려진 방식은 이미 알려진 공격의 시그니처를 활용하여 시그니처 기반으로 공격을 탐지 및 방어하는 방식인데, 이는 오탐율이 낮다는 장점이 있지만 제로 데이 취약점 공격이나 변형된 공격에 대해서는 매우 취약하다는 점이 문제점이다. 하지만 이상 탐지의 경우엔 오탐율이 높다는 단점이 존재하지만 제로 데이 취약점 공격이나 변형된 공격에 대해서도 식별하여 탐지 및 차단할 수 있다는 장점이 있어 관련 연구들이 활발해지고 있는 중이다. 본 연구에서는 이 중 이상 탐지 메커니즘에 대해 다뤘다. 앞서 말한 단점인 높은 오탐율을 보완하며 그와 더불어 이상 탐지와 분류를 동시에 수행하는 새로운 메커니즘을 제안한다. 본 연구에서는 여러 알고리즘의 특성을 고려하여 5가지의 구성으로 실험을 진행하였다. 그 결과로 가장 우수한 정확도를 보이는 모델을 본 연구의 결과로 제안하였다. Extra Tree와 Three layer ANN을 동시에 적용하여 공격 여부를 탐지한 후 공격을 분류된 데이터에 대해서는 Extra Tree를 활용하여 공격 유형을 분류하게 된다. 본 연구에서는 NSL-KDD 데이터 세트에 대해서 검증을 진행하였으며, Accuracy는 Normal, Dos, Probe, U2R, R2L에 대하여 각각 99.8%, 99.1%, 98.9%, 98.7%, 97.9%의 결과를 보였다. 본 구성은 다른 모델에 비해 우수한 성능을 보였다.