Continuous Risk Profile(CRP)은 고속도로의 사고취약구간을 선정하는 방법론 중에서 정확성과 효율성이 뛰어난 것으로 알려져 있다. 그러나 전통적인 CRP는 데이터베이스 구축을 위한 대규모 투자를 필요로 하는 안전성능함수를 이용한다. 본 연구는 안전성능함수 대신 동질 그룹들의 평균사고건수를 규모조정계수로 이용하는 CRP를 제안하는 것을 목적으로 한다. 고속도로 구간들을 동질 그룹으로 분류하기 위하여 각 구간의 AADT와 차로 수 자료를 기반으로 하는 계층적 군집분석이 수행된다. 제안된 모형은 캘리포니아의 I-880 자료를 이용하여 다른 여러 가지 사고취약구간 선정방법들과 비교된다. 분석 결과에 따르면, 제안된 모형은 false negative를 발생시키지 않으며 false positive rate를 감소시킨다. 본 연구에서 개발된 방법론은 추가적인 복잡한 데이터베이스 없이 고속도로 사고취약구간을 선정하는 데에 활용될 수 있으며, 또한 고속도로 안전관리시스템을 개선하는 데에 기여할 수 있다.
We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ~80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million lightcurves, and found 1620 QSO candidates. During the selection, none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution (SAGE) LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.
The nature of wireless transmission has made wireless sensor networks defenseless against various attacks. This paper presents warning message counter method (WMC) to detect blackhole attack, grayhole attack and sinkhole attack in wireless sensor networks. The objective of these attackers are, to draw the nearby network traffic by false routing information and disrupt the network operation through dropping all the received packets (blackhole attack), selectively dropping the received packets (grayhole and sinkhole attack) and modifying the content of the packet (sinkhole attack). We have also attempted light weighted symmetric key cryptography to find data modification by the sinkhole node. Simulation results shows that, WMC detects sinkhole attack, blackhole attack and grayhole attack with less false positive 8% and less false negative 6%.
For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.
기존 침입탐지시스템에서는 구현의 용이성 때문에 오용침입탐지 기법이 주로 사용되었지만, 새로운 침입에 대처하기 위해서는 궁극적으로 비정상행위탐지 기법이 요구된다. 그 중 HMM기법은 생성메커니즘을 알 수 없는 이벤트들을 모델링하고 평가하는 도구로서 다른 침입탐지기법에 비해 침입탐지율이 높은 장점이 있다. 하지만 높은 성능에 비해 정상행위 모델링 시간이 오래 걸리는 단점이 있는데, 본 논문에는 실제 해킹에 사용되고 있는 다양한 침입패턴을 분석하여 권한이동시의 이벤트 추출방법을 이용한 모델링 기법을 제안하였고 이를 통하여 모델링 시간과 False-Positive 오류를 줄일 수 있는 지 평가해 보았다. 실험결과 전체 이벤트 모델링에 비해 탐지율이 증가하였고 시간 또한 단축됨을 알 수 있었다.
In this work, we are interested in the extraction of areas of interest from satellite images by introducing a MO-TRIBES/OC-SVM approach. The One-Class Support Vector Machine (OC-SVM) is based on the estimation of a support that includes training data. It identifies areas of interest without including other classes from the scene. We propose generating optimal training data using the Multi-Objective TRIBES (MO-TRIBES) to improve the performances of the OC-SVM. The MO-TRIBES is a parameter-free optimization technique that manages the search space in tribes composed of agents. It makes different behavioral and structural adaptations to minimize the false positive and false negative rates of the OC-SVM. We have applied our proposed approach for the extraction of earthquakes and urban areas. The experimental results and comparisons with different state-of-the-art classifiers confirm the efficiency and the robustness of the proposed approach.
네트워크를 통한 정보의 공유는 오늘날 클라우드 서비스 환경으로 발전하여 그 이용자수를 빠르게 증가시키고 있지만 네트워크를 기반으로 하는 불법적인 공격자들의 주요 표적이 되고 있다. 아울러 공격자들의 다양한 공격 기법 중 IP 스푸핑은 그 공격 특성상 일반적으로 자원고갈 공격을 수반하기 때문에 이에 대한 빠른 탐지와 대응 기법이 요구 된다. IP 스푸핑 공격에 대한 기존의 탐지 방식은 연결 요청을 시도한 클라이언트의 트레이스 백 정보 분석과 그 일치 여부에 따라 최종적인 인증과정을 수행 한다. 그렇지만 트레이스 백 정보의 단순 비교 방식은 서비스 투명성을 요구하는 환경에서 빈번한 False Positive로 인하여 과도한 OTP 발생을 요구할 수 있다. 본 논문에서는 이러한 문제를 개선하기 위해 트레이스 백 정보 기반의 대칭키 암호화 기법을 적용하여 상호 인증 정보로 사용하고 있다. 즉, 트레이스 백 기반의 암호화 키를 생성한 후 정상적인 복호화 과정의 수행 여부로 상호 인증이 가능하도록 하였다. 아울러 이러한 과정을 통하여 False Positive에 의한 오버헤드도 개선할 수 있었다.
본 논문은 각성상태에 다른 생리신호와 행위신호 및 주관적 평가의 상관관계에 대하여 나타내었다. Nz와 반응시간은 mKSS level 의 변화와 동일한 경향을 나타내는데 반하여 1분당 눈 깜박임 수는 앞의 두 가지 변수와 다른 경향을 나타내었다. 1분당 눈깜박임 수는 mKSS level 1에서 5까지는 낮은 변화율 갖고 mKSS level 7에서는 높은 변화율을 갖는 반면에 mKSS level 9에서는 이와 반대로 변화율이 급격히 감소한다. 피검자들은 서로다른 1분당 눈깜박임 수(EBR)를 가지나 EBR의 변화율은 비슷하였다. 그러므로 EBR의 변화율을 각성판정지표로 사용할 수 있음을 알 수 있었다. 반응시간 실험 결과로부터mKSS level 5이상부터 작업수행능력이 낮아짐을 알 수 있었고 false positive 와 false negative 가 mKSS level3부터 관찰되었으므로 효과적으로 각성제어를 위하여 mKSS level 3과 5사이에 각성상태를 향상시키기 위한 소리나 향기 등의 자극을 주어야 함을 알 수 있었다.
최근 정보통신 기술의 발달로 인하여 데이터의 양이 점차 증가하고 있으며, 이에 대한 처리와 관련된 연구가 활발히 진행되고 있다. 주어진 집합 내에 특정 개체의 존재여부를 알기위해 사용되고 있는 블룸필터는 데이터의 공간 활용에 매우 유용한 구조이다. 본 논문에서는 블룸필터의 긍정오류확률에 대한 요인분석과 함께, 긍정오류를 최소화 시키기 위한 방안으로 병렬구조 방식의 블룸필터를 제안한다. 일반 블룸필터의 최소 긍정오류확률값을 가질 수 있도록 구현된 병렬 불룸필터 방식은 일반 블룸필터 크기의 메모리와 유사한 크기를 사용하지만, 해쉬함수별로 병렬 처리함으로서, 속도를 높일 수 있다는 장점을 가진다. 또한 완전 해쉬함수를 사용하는 경우에는 삽입뿐 아니라, 삭제도 가능하다는 장점을 가진다.
Journal of the Korean Data and Information Science Society
/
제26권3호
/
pp.611-618
/
2015
오늘날 정보 기술과 소셜미디어의 확산으로 인하여 빅 데이터에 관심이 집중되고 있다. 이를 처리하기 위한 기술 중의 하나가 데이터마이닝기법인데, 이들 중에는 연관성 규칙이 많이 활용되고 있다. 연관성 규칙은 방향에 따라 양, 음, 그리고 역의 연관성 규칙 등이 존재하며, 평가 기준을 설정하고자 하는 경우에는 이들 세 가지 연관성 규칙을 동시에 고려하는 것이 바람직하다고 할 수 있다. 이를 위해 본 논문에서는 의학진단분야에서 활용되고 있는 진단도구들 중에서 민감도, 특이도, 위양성도, 그리고 위음성도를 고려한 균형비교신뢰도를 제안하고자 한다. 또한 흥미도 측도가 가져야 할 조건들을 점검한 후, 예제를 통하여 측도의 유용성을 고찰하였다. 그 결과, 균형비교신뢰도는 비교신뢰도와 역의 비교신뢰도가 양의 값을 가지는 경우에는 양의 값을 가지며, 이들 두 값이 음인 경우에는 음으로 나타났다. 따라서 연관성 규칙의 평가 기준 관점에서 볼 때 비교신뢰도와 역의 비교신뢰도를 개별적으로 이용하기 보다는 균형비교신뢰도를 활용하는 것이 더 바람직하다고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.