• 제목/요약/키워드: Fall-of-potential method

검색결과 79건 처리시간 0.016초

전류 및 전위 보조전극을 수직으로 배치하는 전위강하법을 이용한 접지저항의 측정 (Measurement of the Ground Resistance using the Fall-of-Potential Method with the Vertically-placed Current and Potential Auxiliary Electrodes)

  • 이복희;김기복;김유하
    • 조명전기설비학회논문지
    • /
    • 제26권3호
    • /
    • pp.53-60
    • /
    • 2012
  • The fall-of-potential method is commonly used in measuring the ground resistance of large-scaled grounding system and the current and potential auxiliary electrodes are horizontally arranged. Because the distances between the ground grid to be tested and auxiliary electrodes are limited in downtown areas, it is very difficult to measure accurately the ground resistance of large-scaled grounding system. In this paper, the fall-of-potential method of measuring the ground resistance with the vertically-placed current and potential auxiliary electrodes was examined and discussed. The validity and good accuracy of the proposed method of measuring the ground resistance were confirmed through various simulations and actual tests carried out in uniform and two-layer soil structures.

전위강하법에 의한 접지저항 측정에 미치는 전류보조전극의 위치의 영향 (Effect of the Current Probe Position on Ground Resistance Measurement Using Fall-of-Potential Method)

  • 이복회;엄주홍;김성원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1874-1876
    • /
    • 2000
  • In this paper, the effects of the positions of the current probe on the measurements of the ground resistanc, and potential gradients with fall-of-potential method are described, and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of the measuring auxiliary probes. The ground resistance is calculated by applying the 61.8% lute using fall-of-potential method.

  • PDF

3전극과 4전극 전위강하법으로 측정한 대지저항률의 비교 (Comparison of the Earth Resistivity Measured by the 3-Electrode and 4-Electrode Fall-of-Potential Methods)

  • 이복희;김기복
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.95-101
    • /
    • 2013
  • This paper presents the comparison of the earth resistivity obtained from the measurements made with the three-electrode and four-electrode fall-of-potential techniques. The ${\rho}-a$ curve obtained from Wenner four-electrode method in undisturbed earth is in good agreement with the ${\rho}-l$ curve obtained from the three-electrode method based on the fall-of- potential method. However, The ${\rho}-a$ curve in disturbed earth with moisture and freezing is significantly different with the ${\rho}-l$ curve. The ${\rho}-a$ curve is considerably sensitive to the freezing and the moisture present in the earth surface compared to the ${\rho}-l$ curve. Thus to determine the actual earth resistivity, it is necessary to take into account the earth surface conditions when measuring the earth resistivity.

Effects of Position of Auxiliary Probe on Ground Resistance Measurement Using Fall-of-Potential Method

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • International Journal of Safety
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance using the fall-of-potential method are described and the testing techniques for minimizing the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error in the measured value of the ground resistance due to the position of the potential probe, the ground resistance was measured for the case in which the distance of the current probe was fixed at 50[m] and the distance of the potential probe was located from 10[m] to 50[m]. Also, the potential probe was located in turn at $30[^{\circ}]$, $45[^{\circ}]$, $60[^{\circ}]$, $90[^{\circ}]$, and $180[^{\circ}]$. As a consequence, relative error decreased with increasing distance of the potential probe and decreasing angle between the current probe and potential probe. The results could help to determine the position of the potential probe during the ground resistance measurement.

전위강하법에 의한 접지임피던스 측정 시 오차요인 분석 (Analysis of error factors of the Fall-of-potential test method in measurements of grounding impedance)

  • 전병욱;이수봉;정동철;이복희;안창환
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 2008
  • This paper presents the error factors of Fall-of-potential test method used in measurements of the grounding-system impedance. This test methods inherently can introduce two possible errors in the measurements of grounding-system impedance: (1) ground mutual resistance due to current flow through ground from the ground electrode to the current probe, (2) ac mutual coupling between the current test lead and the potential test lead. The errors of ground mutual resistances and ac mutual coupling are expressed by the equation in calculating grounding impedance. These equations were calculated by Matlab that is commercial tool using mathematical calculation. The results of calculation were applied to correct grounding impedance.

  • PDF

접지임피던스 측정시 보조전극의 배치 기준 연구 (Placement Standard Research of Auxiliary Probes when Measuring Ground Impedance)

  • 김동우;길형준;김동욱;이기연;문현욱
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1984-1991
    • /
    • 2011
  • Among ground impedance measurement methods, the fall-of-potential method is the most thorough and reliable method. In the fall-of-potential method, ground electrode and auxiliary probes are placed in a straight line, and then, auxiliary potential probe is moved away from the ground electrode. The point at which plotted resistance curve flattens out is taken as right position of auxiliary potential probe. However, in some cases, it is hard to place ground electrode and auxiliary probes in a straight line. Therefore, we provided alternative placement method in this research. The method can be easily applicable to placing auxiliary probes. Also, this paper analyzed and compared ground impedance measurement standards of large grounding systems. Based on the analysis, practical measurement method using an earth tester was proposed. The proposed methods presented in this paper will be useful when determining locations of auxiliary probes in alternative positions, and the methods can be applied practically and easily.

전위강하법을 이용한 접지저항 측정법 개선에 관한 연구 (A Study on the Measurement of Grounding Resistance Using the Fall-of-Potential Method)

  • 박덕열;위원석;류보혁;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1490-1492
    • /
    • 1999
  • This paper shows the accuracy of 61.8% rule which is based on the fall-of-potential method in field measurement of earth resistances, and proposes the measurement method which is applicable to the industries. This paper also finds the minimum distance to obtain the horizontal position in the earth resistance curves, and Proposes the standard form for measurement of earth resistance using the fall-of-Potential method.

  • PDF

측정전류전이법을 이용한 운전중인 접지시스템의 접지저항 측정 (Measurements of the Ground Resistance using the Test Current Transition Method in Powered Grounding Systems)

  • 이복희;엄주홍;김성원
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권8호
    • /
    • pp.347-353
    • /
    • 2002
  • This paper presents an accurate method for measuring the ground resistance in powered grounding system. Most of substations and electric power equipments are interconnected to an extensive grounding network of overhead ground wires, neutral conductors of transmission lines, cable shields, and etc. The parasitic effects due to circulating ground currents and ground potential rise make a significant error in measuring the ground resistance. The test current transition method was proposed to reduce the effects of stray ground currents, ground potential rise and harmonic components in measurements of the ground resistance for powered grounding systems. The instrumental error of the test current transition method is decreased as the ratio of the test current signal to noise(S/N) increases. It was found from the test results that the proposed measuring method of the ground resistance is more accurate than the conventional fall-of-potential method or low-pass filter method, and the measuring error was less than 3[%]when S/N is 10.

지역필터를 이용한 수변전실 접지저항의 새로운 측정방법 (A New Measurement Method of the Ground Resistance Using a Low-pass Filter in Energized Substations)

  • 이복희;엄주홍;이승칠;김성원;안창환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권8호
    • /
    • pp.387-393
    • /
    • 2001
  • This paper describes an advanced measuring method and precise evaluation of the ground resistance for the grounding system of energized substations and power equipments. A grounding system of substations consists of all interconnected grounding connections of grounded conductors, neutral ground wires, underground conductors of distribution lines, cable shields, grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding system of high voltage energized substations because of harmonic components caused by switched power supplies or overloads. The conventional fall-of-potential method may be subject to big error if stray ground currents and potentials are present. In this work, to improve the precision in measurements of the ground resistance by eliminating the effects of harmonic components and stray currents and potentials, the investigations of the ground resistance measurement by using a low pass filter in a model energized grounding system were conducted. The accuracy of ground resistance mesurements was evaluated as a function of the ratio of the test signal to noise (S/N). The errors due to the proposed ground resistance measurement method were decreased with increasing S/N and were less than 5[%] as S/N is 10. The proposed ground resistance measurement method appears to be considerably more accurate than the conventional fall-of -potential method. It is allows cancellation of the parasitic resistance of energized grounding systems, to employ the measurement method that allows cancellation of the parasitic effects due to other circulating ground currents and ground potential rises in practical situations.

  • PDF

현장실측에 의한 메시(Mesh)접지저항 출정기법 연구 (A Study on the Measurement Technique of the Grounding Mesh Resistance by Field Measurements)

  • 한기붕;김삼수;정세중;이상익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.426-429
    • /
    • 1999
  • In this paper, we have provided the measurement technique of the grounding mesh resistance by field measurements. The standard of measurement is specified in the IEEE Std 81.2-1991 and JEAC 5001-1988, which is the the fall-of-potential method by test-current injection, but this method is difficult to apply at field, where is small around a electric power substation of domestic. For the convenient measurement method, space of assistant probe and quantity of test-current injection are changed step for step. As the result, ' the proposed measurement technique of grounding mesh resistance is that the space of current and potential probes must be fixed at 150rn from a grounding mesh, the test-current injection has to keep 5A or more.

  • PDF