• Title/Summary/Keyword: Fall-of-Potential

Search Result 236, Processing Time 0.021 seconds

익산지역 강수의 계절별 산성도와 화학성상 (Seasonal Variations of Acdity and Chemicstry of Precipitation in Iksan Area)

  • 강공언;오인교;김희강
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.393-402
    • /
    • 1999
  • Precipitation samples were collected by the wet-only sampling method in Iksan in the northwest of Chonbuk from March 1995 to February 1997. These samples were analyzed for the concentration of ion components, in addition to pH and electrical conductivity. The annual mean pH of precipitation was 4.8 and the seasonal trend of pH was shown to be low in Fall and Winter(4.5), middle-ranged in Spring(4.7) and high in Summer(5.0). The frequency of pH below 5.6 was about 71%. The seasonal pattern of pH frequency was found to be different in each season. In the case of the pH less than 5.0, the frequency was higher in Spring, Fall and Winter than in Summer, especially higher in Fall than in other seasons. The concentrations of analysed ions showed a pronounced seasonal pattern. However, major ion species for all seasons were $NH^+_4,;Ca^{2+};and;Na^+$ among cations and $SO^{2-}_4,;Cl^-;and;NO^-_3$ among anions. The major acidifying species appeared to be $nss-SO^{2-}_4;and;NO^-_3$, and the main bases responsible for the neutralization of precipitation acidity were $nss-Ca^{2+};and;NH^+_4$. The potential acidity of precipitation, pAi, was found to be between 3.0 and 5.0 for total samples, while the measured pH was approximately between 3.9 and 7.8. The seasonal trend of pAi showed a decreasing order: Summer (4.3), Winter(4.0), Spring and Fall(3.8). During the Fall, both pAi and pH were especially very low, which indicated that during this period the potential acidity of precipitation was high but the neutralizing capacity was low. For Spring, pAi was very low but pH was slightly high. This was likely due to the large amount of $CaCO_3$ in the soil particles transported over a long range from the Chinese continent that were incorporated into the precipitation, and then neutralized the acidifying species with its high concentraton.

  • PDF

운전 중인 송전선로의 철탑 전위강하시험과 해석 (Test and Analysis of Fall-Of-Potential at Towers of Energized Transmission Lines)

  • 강연욱;이동일;심응보;김경철;최종기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권5호
    • /
    • pp.195-201
    • /
    • 2006
  • Tower footing resistance and fault current division factor are important design factors for evaluation of the lightning performance of the transmission line and/or design of the grounding electrode system. The periodic measurement of those factors are also important to verify that the grounding performance of the towers has been maintained good. However, the direct measurement of those factors in operating or energized condition is very difficult because of many practical reasons, such as the difficulty of disconnecting overhead groundwires from the tower under test. With supports by GECOL (General Electricitiy Company of Libya), we had a special chance to conduct Fall-Of-Potential (FOP) test on the energized 220 kV transmission towers before and after disconnecting the overhead groundwires from the towers under test. In this paper, the FOP test results on the towers and the fault current division factors estimated from the comparision of the FOP tests with and without overhead groundwires were presented. The computer models for the FOP test simulations were also constructed to find that the simulated results agreed very well with the measured ones.

전위강하법에 의한 접지저항 측정시 보조전극의 위치변화에 따른 오차 분석 (Measurement Error Analysis of Ground Resistance Using the Fall-of-Potential Method According to the Locations of Auxiliary Probes)

  • 김동우;길형준;김동욱;이기연;문현욱;김향곤
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.222-231
    • /
    • 2010
  • This paper presents numerical analysis of measurement errors of ground electrode using the fall-of-potential method. In order to analyze ground resistance error according to the positions of auxiliary probes, firstly, national and international standards were researched. Secondly, numerical ground resistance error of hemispheric electrode was analyzed according to the locations of auxiliary probes and the angle between probes. Then, error-reduced positions of auxiliary probes were shown according to the distance to auxiliary current probe versus ground electrode size. Finally, error compensation method was presented. The results presented in this paper provide useful information regarding ground resistance error of alternative positions of auxiliary probes in case that the auxiliary probes could not be located at the proper position in such cases as there are buildings, roadblock or underground metallic pipe at that position.

전위강하법에 의한 접지저항측정에 미치는 전류보조전극의 영향 (Effects of the Current Probe on Ground Resistance Measurements Using Fall-of-Potential Method)

  • 이복희;엄주홍
    • 조명전기설비학회논문지
    • /
    • 제14권6호
    • /
    • pp.69-77
    • /
    • 2000
  • 본 논문에서는 찬우$\mid$강하법에 의한 접지저항 및 대지첸위 분표의 측캠시 전휴보조전극의 영향에 대하여 기술하였으며, 측정시 오치를 최소화하는 기법을 제안하였다. 전위강해법은 전위와 천류의 측정에 이론적인 비1깅을 두고 있으며, 측정오차는 주로 측정시 설치하는 보조전극의 위치와 자체저항에 기인한다. 피측정 접지전극의 접지저항은 전위강하법에서 전위보조전극을 피측정 접지전극과 전류보조전극이 이루는 일직선상에 위치시킬 때 61.8[%]법칙을 적용하여 측정한다. 하지만 건물이나 포장도로, 구조물 등이 산재해 있는 도심의 경우에는 현장에서 피측정 접지전극과 전류보조전극 사이에 적결한 이격거리 확보가 불가능하거냐 전류보조전극의 접지저행값이 피측정 챔 지전극에 비하여 큰 값을 가지는 경우가 있다. 파측정 접지천극과 전류보조전극을 충분히 이격시키지 않거나 전류류보조전극의 접지저항값이 피측청 접지전극의 접지저항보다 비정상척으로 큰 경우 접지저항의 측정은 오차를 수반하게 되며, 측정된 접지저항값은 오차즐 보정해 주어야 한다. 본 연구애서 측정대상 전극은 길이 2.4[m]의 봉형 접지전극으호 하였으며, 전류보조전극의 영향을 고려할 때 피측정 접지전극과 전류보조전극의 적정한 이격거리는 피측정 접치전극 길이의 5배 이상으로 하여야 전위보조전극을 사설하기가 용이하며 측정정확도의 확보에 유리하다. 또한 전류보존전극의 접지저항값이 피측정 접지전극의 접지저항값 약 36.5배 이하에서는 거의 오차를 발생시키지 않는다.

  • PDF

저주파 접지임피던스 측정에 미치는 보조전극의 영향 (Effects of Auxiliary Probe on Low Frequency Ground Impedance Measurement)

  • 길형준;김동우;김동욱;이기연;김향곤;문현욱
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.367-370
    • /
    • 2008
  • In this paper, the effects of the position and the angle of the auxiliary probes on the measurements of the low frequency ground impedance with the fall-of-potential method are described iud the testing techniques to minimize the measuring errors are proposed. The fall-of-pot ential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the characteristics of ground impedance due to the location of the potential probe, ground impedances were measured in case that the distance of current probe was fixed at 50[m] and the distance of potential probe was located from 10[m] to 50[m]. Also, the potential robe was located at 30[$^{\circ}$], 40[$^{\circ}$], 60[$^{\circ}$], 90[$^{\circ}$], and 180[$^{\circ}$]. The results could be help to determine the location of potential probe when the ground impedance was measured at grounding system.

  • PDF

New Launching Concept for Free-Fall Lifeboats and Validation by Model Experiments and Numerical Simulations

  • Arai, Makoto
    • Journal of Ship and Ocean Technology
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2002
  • A new concept for launching free-fall lifeboats, proposed by Yokohama National University is described in this paper. It has been pointed out that, using the conventional single-skid free-fall system, the potential for dangerous lifeboat motions (in which the lifeboat moves backward or jerks on the surface after entering the water) increases with the fall height of the lifeboat. One of the principal causes of this undesirable motion is vertical rotation of the lifeboat during its restricted fall at the edge of the launching skid. Thus a new "double-skid"launching concept is proposed to effectively eliminate the rotation of the lifeboat at the skid end and to enable the lifeboat to move smoothly after entering the water. In order to evaluate the performance of the proposed method, a series of model experiments and numerical simulations is carried out in which two lifeboat models with overall lengths of 1 meter and 6 meters are used. The effects of design parameters such as skid angle and skid height are investigated, and an example of the implementation of this new system at the stern of a large merchant ship is illustrated.

보조전극의 배치 및 주파수에 따른 매설지선의 접지임피던스 특성 (Characteristics for Ground Impedance of Counterpoise according to Position of Auxiliary Probe and Frequency)

  • 길형준;김동우
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.33-37
    • /
    • 2012
  • This paper describes the characteristics for ground impedance of counterpoise according to position of auxiliary probe and frequency using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of auxiliary probes. In order to analyze the effects of ground impedance due to the distance of the current probe and frequency, ground impedances were measured in case that the distance of current probe was located from 10[m] to 100[m] and the measuring frequency was ranged in 55 [Hz], 128[Hz], 342[Hz], and 513[Hz]. The results could be help to determine the position of auxiliary probe when the ground impedance was measured at grounding system.

현장실측에 의한 메시(Mesh)접지저항 출정기법 연구 (A Study on the Measurement Technique of the Grounding Mesh Resistance by Field Measurements)

  • 한기붕;김삼수;정세중;이상익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.426-429
    • /
    • 1999
  • In this paper, we have provided the measurement technique of the grounding mesh resistance by field measurements. The standard of measurement is specified in the IEEE Std 81.2-1991 and JEAC 5001-1988, which is the the fall-of-potential method by test-current injection, but this method is difficult to apply at field, where is small around a electric power substation of domestic. For the convenient measurement method, space of assistant probe and quantity of test-current injection are changed step for step. As the result, ' the proposed measurement technique of grounding mesh resistance is that the space of current and potential probes must be fixed at 150rn from a grounding mesh, the test-current injection has to keep 5A or more.

  • PDF

접지임피던스 측정에 관한 전류보조전극 거리 및 주파수의 영향 분석 (Analysis for Ground Impedance Measurement Influenced by Distance of Current Probe and Frequency)

  • 길형준;김동우;김동욱;이기연;문현욱;김향곤
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2009
  • This paper describes the analysis for ground impedance measurement influenced by distance of current probe and frequency using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of auxiliary probes. In order to analyze the effects of ground impedance due to the distance of the current probe and frequency, ground impedances were measured in case that the distance of current probe was located from 5[m] to 20[m] and the measuring frequency was ranged in 55[Hz], 128[Hz], 342[Hz], and 513[Hz]. The results could be help to determine the position of current probe when the ground impedance was measured at grounding system.

  • PDF

지역필터를 이용한 수변전실 접지저항의 새로운 측정방법 (A New Measurement Method of the Ground Resistance Using a Low-pass Filter in Energized Substations)

  • 이복희;엄주홍;이승칠;김성원;안창환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권8호
    • /
    • pp.387-393
    • /
    • 2001
  • This paper describes an advanced measuring method and precise evaluation of the ground resistance for the grounding system of energized substations and power equipments. A grounding system of substations consists of all interconnected grounding connections of grounded conductors, neutral ground wires, underground conductors of distribution lines, cable shields, grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding terminals of equipments, and etc. It is very difficult to measure the accurate ground resistance of the grounding system of high voltage energized substations because of harmonic components caused by switched power supplies or overloads. The conventional fall-of-potential method may be subject to big error if stray ground currents and potentials are present. In this work, to improve the precision in measurements of the ground resistance by eliminating the effects of harmonic components and stray currents and potentials, the investigations of the ground resistance measurement by using a low pass filter in a model energized grounding system were conducted. The accuracy of ground resistance mesurements was evaluated as a function of the ratio of the test signal to noise (S/N). The errors due to the proposed ground resistance measurement method were decreased with increasing S/N and were less than 5[%] as S/N is 10. The proposed ground resistance measurement method appears to be considerably more accurate than the conventional fall-of -potential method. It is allows cancellation of the parasitic resistance of energized grounding systems, to employ the measurement method that allows cancellation of the parasitic effects due to other circulating ground currents and ground potential rises in practical situations.

  • PDF