• Title/Summary/Keyword: Fake Information Detection

Search Result 80, Processing Time 0.025 seconds

Fake Iris Image Detection based on Watermark

  • Kim, Man-Ki;Lee, Samuel;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, we propose a describes how to detect a false iris image by inserting watermark into a iris image. The existing method, which inserts the watermark into the entire iris image to detect a fake iris, has a problem that can evade it by segmenting iris region of an iris image. The purpose of overcoming the problem, this paper proposes a new fake iris detection technique based on digital watermark. It first searches a central point of an iris image, divide the image into blocks with respect to the point. executes Discrete Cosine Transform, inserts watermark into the blocks, and then verifies an iris image using NC(Normalized Correlation). In the experiments, we confirm the robustness for attacks - crop and JPEG.

Fingerprint Liveness Detection Using Patch-Based Convolutional Neural Networks (패치기반 컨볼루션 뉴럴 네트워크 특징을 이용한 위조지문 검출)

  • Park, Eunsoo;Kim, Weonjin;Li, Qiongxiu;Kim, Jungmin;Kim, Hakil
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • Nowadays, there have been an increasing number of illegal use cases where people try to fabricate the working hours by using fake fingerprints. So, the fingerprint liveness detection techniques have been actively studied and widely demanded in various applications. This paper proposes a new method to detect fake fingerprints using CNN (Convolutional Neural Ntworks) based on the patches of fingerprint images. Fingerprint image is divided into small square sized patches and each patch is classified as live, fake, or background by the CNN. Finally, the fingerprint image is classified into either live or fake based on the voting result between the numbers of fake and live patches. The proposed method does not need preprocessing steps such as segmentation because it includes the background class in the patch classification. This method shows promising results of 3.06% average classification errors on LivDet2011, LivDet2013 and LivDet2015 dataset.

A Comparative Study of Text analysis and Network embedding Methods for Effective Fake News Detection (효과적인 가짜 뉴스 탐지를 위한 텍스트 분석과 네트워크 임베딩 방법의 비교 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • Fake news is a form of misinformation that has the advantage of rapid spreading of information on media platforms that users interact with, such as social media. There has been a lot of social problems due to the recent increase in fake news. In this paper, we propose a method to detect such false news. Previous research on fake news detection mainly focused on text analysis. This research focuses on a network where social media news spreads, generates qualities with DeepWalk, a network embedding method, and classifies fake news using logistic regression analysis. We conducted an experiment on fake news detection using 211 news on the Internet and 1.2 million news diffusion network data. The results show that the accuracy of false network detection using network embedding is 10.6% higher than that of text analysis. In addition, fake news detection, which combines text analysis and network embedding, does not show an increase in accuracy over network embedding. The results of this study can be effectively applied to the detection of fake news that organizations spread online.

A Study on Automated Fake News Detection Using Verification Articles (검증 자료를 활용한 가짜뉴스 탐지 자동화 연구)

  • Han, Yoon-Jin;Kim, Geun-Hyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.569-578
    • /
    • 2021
  • Thanks to web development today, we can easily access online news via various media. As much as it is easy to access online news, we often face fake news pretending to be true. As fake news items have become a global problem, fact-checking services are provided domestically, too. However, these are based on expert-based manual detection, and research to provide technologies that automate the detection of fake news is being actively conducted. As for the existing research, detection is made available based on contextual characteristics of an article and the comparison of a title and the main article. However, there is a limit to such an attempt making detection difficult when manipulation precision has become high. Therefore, this study suggests using a verifying article to decide whether a news item is genuine or not to be affected by article manipulation. Also, to improve the precision of fake news detection, the study added a process to summarize a subject article and a verifying article through the summarization model. In order to verify the suggested algorithm, this study conducted verification for summarization method of documents, verification for search method of verification articles, and verification for the precision of fake news detection in the finally suggested algorithm. The algorithm suggested in this study can be helpful to identify the truth of an article before it is applied to media sources and made available online via various media sources.

A Study on Fake News Subject Matter, Presentation Elements, Tools of Detection, and Social Media Platforms in India

  • Kanozia, Rubal;Arya, Ritu;Singh, Satwinder;Narula, Sumit;Ganghariya, Garima
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.1
    • /
    • pp.48-82
    • /
    • 2021
  • This research article attempts to understand the current situation of fake news on social media in India. The study focused on four characteristics of fake news based on four research questions: subject matter, presentation elements of fake news, debunking tool(s) or technique(s) used, and the social media site on which the fake news story was shared. A systematic sampling method was used to select a sample of 90 debunked fake news stories from two Indian fact-checking websites, Alt News and Factly, from December 2019 to February 2020. A content analysis of the four characteristics of fake news stories was carefully analyzed, classified, coded, and presented. The results show that most of the fake news stories were related to politics in India. The majority of the fake news was shared via a video with text in which narrative was changed to mislead users. For the largest number of debunked fake news stories, information from official or primary sources, such as reports, data, statements, announcements, or updates were used to debunk false claims.

FakedBits- Detecting Fake Information on Social Platforms using Multi-Modal Features

  • Dilip Kumar, Sharma;Bhuvanesh, Singh;Saurabh, Agarwal;Hyunsung, Kim;Raj, Sharma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.51-73
    • /
    • 2023
  • Social media play a significant role in communicating information across the globe, connecting with loved ones, getting the news, communicating ideas, etc. However, a group of people uses social media to spread fake information, which has a bad impact on society. Therefore, minimizing fake news and its detection are the two primary challenges that need to be addressed. This paper presents a multi-modal deep learning technique to address the above challenges. The proposed modal can use and process visual and textual features. Therefore, it has the ability to detect fake information from visual and textual data. We used EfficientNetB0 and a sentence transformer, respectively, for detecting counterfeit images and for textural learning. Feature embedding is performed at individual channels, whilst fusion is done at the last classification layer. The late fusion is applied intentionally to mitigate the noisy data that are generated by multi-modalities. Extensive experiments are conducted, and performance is evaluated against state-of-the-art methods. Three real-world benchmark datasets, such as MediaEval (Twitter), Weibo, and Fakeddit, are used for experimentation. Result reveals that the proposed modal outperformed the state-of-the-art methods and achieved an accuracy of 86.48%, 82.50%, and 88.80%, respectively, for MediaEval (Twitter), Weibo, and Fakeddit datasets.

Development of a Fake News Detection Model Using Text Mining and Deep Learning Algorithms (텍스트 마이닝과 딥러닝 알고리즘을 이용한 가짜 뉴스 탐지 모델 개발)

  • Dong-Hoon Lim;Gunwoo Kim;Keunho Choi
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2021
  • Fake news isexpanded and reproduced rapidly regardless of their authenticity by the characteristics of modern society, called the information age. Assuming that 1% of all news are fake news, the amount of economic costs is reported to about 30 trillion Korean won. This shows that the fake news isvery important social and economic issue. Therefore, this study aims to develop an automated detection model to quickly and accurately verify the authenticity of the news. To this end, this study crawled the news data whose authenticity is verified, and developed fake news prediction models using word embedding (Word2Vec, Fasttext) and deep learning algorithms (LSTM, BiLSTM). Experimental results show that the prediction model using BiLSTM with Word2Vec achieved the best accuracy of 84%.

Albedo Based Fake Face Detection (빛의 반사량 측정을 통한 가면 착용 위변조 얼굴 검출)

  • Kim, Young-Shin;Na, Jae-Keun;Yoon, Sung-Beak;Yi, June-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.139-146
    • /
    • 2008
  • Masked fake face detection using ordinary visible images is a formidable task when the mask is accurately made with special makeup. Considering recent advances in special makeup technology, a reliable solution to detect masked fake faces is essential to the development of a complete face recognition system. This research proposes a method for masked fake face detection that exploits reflectance disparity due to object material and its surface color. First, we have shown that measuring of albedo can be simplified to radiance measurement when a practical face recognition system is deployed under the user-cooperative environment. This enables us to obtain albedo just by grey values in the image captured. Second, we have found that 850nm infrared light is effective to discriminate between facial skin and mask material using reflectance disparity. On the other hand, 650nm visible light is known to be suitable for distinguishing different facial skin colors between ethnic groups. We use a 2D vector consisting of radiance measurements under 850nm and 659nm illumination as a feature vector. Facial skin and mask material show linearly separable distributions in the feature space. By employing FIB, we have achieved 97.8% accuracy in fake face detection. Our method is applicable to faces of different skin colors, and can be easily implemented into commercial face recognition systems.

Non-destructive identification of fake eggs using fluorescence spectral analysis and hyperspectral imaging

  • Geonwoo, Kim;Ritu, Joshi;Rahul, Joshi;Moon S., Kim;Insuck, Baek;Juntae, Kim;Eun-Sung, Park;Hoonsoo, Lee;Changyeun, Mo;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.495-510
    • /
    • 2022
  • In this study, fluorescence hyperspectral imaging (FHSI) was used for the rapid, non-destructive detection of fake, manmade eggs from real eggs. To identify fake eggs, protoporphyrin IX (PpIX)-a natural pigment present in real eggshells-was utilized as the main indicator due to its strong fluorescence emission effect. The fluorescence images of real and fake eggs were acquired using a line-scan-based FHSI system, and their fluorescence features were analyzed based on spectroscopic techniques. To improve the detection performance and accuracy, an optimal waveband combination was investigated with analysis of variance (ANOVA), and its fluorescence ratio images (588/645 nm) were created for visualization of the real eggs between two different egg groups. In addition, real and fake eggs were scanned using a one-waveband (645 nm) handheld fluorescence imager that can perform real-time scanning for on-site applications. Then, the results of the two methods were compared with one another. The outcome clearly shows that the newly developed FHSI system and the fluorescence handheld imager were both able to distinguish real eggs from fake eggs. Consequently, FHSI showed a better performance (clearer images) compared to the fluorescence handheld imager, and the outcome provided valuable information about the feasibility of using FHSI imaging with ANOVA for the discrimination of real and fake eggs.

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.