• Title/Summary/Keyword: Fairness algorithm

Search Result 307, Processing Time 0.023 seconds

An Efficient Distribution Method of Inter-Session Shared Bandwidth Based on Fairness (공정성 기반의 세션간 공유 대역폭의 효율적 분배 기법)

  • Hwang, Kil-Hong;Ku, Myung-Mo;Kim , Sang-Bok
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.905-912
    • /
    • 2004
  • It is a study LVMPD to solve the fairness problem of inter-session shared bandwidth. Whenever congestion occurs in one session, the highest layer is dropped. Also the highest layer of other sessions in non-congestion is dropped by iner-session fairness. While there is spare bandwidth, receivers of session in non-congestion can't use bandwidth efficiently. In this paper, we proposed a distribution method to use efficiently spare bandwidth that occurred by inter-session fairness. In our method, we considered the highest layer those receivers receiving and the higher layer those receivers requesting. The sender assigns the packet-deleting priority to packets when congestion occurs in receivers, and sets layer add/drop flag when receivers of session in non-congestion request the higher layer. The switch deletes packets with packet-deleting priority and transfers packets with layer add/drop flag for session in non-congestion. Therefore receivers of session in non-congestion can add the higher layer. In experimental results, it was known that proposed algorithm use the inter-session shared bandwidth more effectively compared with already known method.

  • PDF

Opportunistic Scheduling Schemes for Elastic Services in OFDMA Systems (OFDMA 시스템에서 Elastic 서비스를 위한 Opportunistic 스케줄링 기법)

  • Kwon, Jeong-Ahn;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.76-83
    • /
    • 2009
  • In this paper, we provide opportunistic scheduling schemes for elastic services in OFDMA systems with fairness constraints for each user. We adopt the network utility maximization framework in which a utility function is defined for each user to represent its level of satisfaction to the service. Since we consider elastic services whose degree of satisfaction depends on its average data rate, we define the utility function of each user as a function of its average data rate. In addition, for fair resource allocation among users, we define fairness requirements of each user by using utility functions. We first formulate an optimization problem for each fairness requirement that aim at maximizing network utility, which is defined as the sum of utilities of users. We then develop an opportunistic scheduling scheme for each fairness requirement by solving the problem using a dual approach and a stochastic sub-gradient algorithm.

A Scheduling Algorithm for Continuous Media (연속미디어를 위한 스케쥴링 알고리즘)

  • 유명련;안병철
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.371-376
    • /
    • 2001
  • Since continuous media such as video and audio data are displayed within a certain time constraint, their computation and manipulation should be handled under limited condition. Traditional real-time scheduling algorithms cold be directly applicable, because they are not suitable for multimedia scheduling applications which support many clients at the same time. Rate Regulating Proportional Share Scheduling Algorithm based on the stride scheduler is a scheduling algorithm considered the time constraint of the continuous media. The stride schedulers, which are designed to general tasks, guarantee the fairness of resource allocation and predictability. The key concept of RRPSSA is a rate regulator which prevents tasks from receiving more resource than its share in a given period. But this algorithm loses fairness which is a strong point of the stride schedulers, and does not show graceful degradation of performance under overloaded situation. This paper proposes a new modified algorithm, namely Modified Proportional Share Scheduling Algorithm considering the characteristics of multimedia data such as its continuity and time dependency. Proposed scheduling algorithm shows graceful degradation of performance in overloaded situation and it reduces the scheduling violations up to 70% by maintaining the fair resource allocation. The number of context switching is 8% less than RRPSSA and the overall performance is increased.

  • PDF

Capacity Optimization of a 802.16e OPDMA/TDD Cellular System using the Joint Allocation Algorithm of Sub-charmel and Transmit Power - Part II : Sub-channel Allocation in the Uplink Using the Channel Sounding and Initial Transmit Power Decision Algorithm According to the User's Throughput (802.16e OFDMA/TDD 셀룰러 시스템의 성능 최적화를 위한 부채널과 전송전력 결합 할당 알고리즘 - Part II : 상향링크에서 Channel Sounding을 통한 부채널 할당 및 사용자의 수율에 따른 초기전송전력 결정 알고리즘)

  • Ko, Sang-Jun;Chang, Kyung-Hi;Kim, Jae-Hyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.888-897
    • /
    • 2007
  • In this paper, we propose an uplink dynamic resource allocation algorithm to increase sector throughput and fairness among users in 802.16e OFDMA TDD system. In uplink, we address the difference between uplink and downlink channel state information in 802.16e OFDMA TDD system. The simulation results show that not only an increment of 10% of sector throughput but higher level of fairness is achieved by round-robin using the FLR and the rate / margin adaptive inner closed-loop power control algorithm. The FLR algorithm determines the number of sub-channels to be allocated to the user according to the user's position. Also, we get 31.8% more sector throughput compared with the round-robin using FLR by FASA algorithm using uplink channel state information. User selection, sub-channel allocation, power allocation algorithms and simulation methodology are mentioned in Part I.

Adaptive Limited Dynamic Bandwidth Allocation Scheme for EPON (EPON 시스템의 적응적 Limited 동적 대역 할당 방식)

  • Hwang Jun-Ho;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.449-455
    • /
    • 2006
  • Due to advance in multimedia applications and integrated Internet services, the optical access networks have been actively studied. In particular, Ethernet passive optical network (EPON) has received much attention due to high bandwidth provision with low cost. In EPON system, the data transmission is carried out in two directions: downstream (from OLT to ONU) and upstream (from ONU to OLT). The downstream data is broadcasted to every ONUs, while the upstream data is point-to-point transmitted between each ONU and OLT, where the uplink is shared by all ONUs in the form of TDMA. The bandwidth allocation algorithm is required to efficiently manage the bandwidth on the uplink. The limited algorithm was proposed to enhance the capability of dynamic bandwidth allocation. In this paper, we propose the adaptive limited algorithm to enhance the shortcomings of limited algorithm. The adaptive limited algorithm enhances the dynamics on bandwidth allocation, and at the same time controls the fairness on packet delay. Through the computer simulations, it is shown that the adaptive limited algorithm achieves high dynamic on bandwidth allocation, maintains a good fairness on packet delay between ONUs, and keeps the fairness on the bandwidth on the demand basis.

Design of Traffic Control Scheme for Supporting the Fairness of Downstream in Ethernet-PON (이더넷 기반 광가입자망에서 공평성 보장을 위한 하향 트래픽 제어 기법 설계)

  • Han Kyeong-Eun;Park Hyuk-Gu;Yoo Kyoung-Min;Kang Byung-Chang;Kim Young-Chon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.84-93
    • /
    • 2006
  • Ethernet-PON is an emerging access network technology that provides a low-cost method of deploying optical access lines between OLT and ONUs. It has a point-to-multipoint and multipoint-to-point architecture in downstream and upstream direction, respectively. Therefore, downstream packets are broadcast from an OLT toward all ONUs sithout collision. On the other hand, since alt ONUs share a common channel, the collision may be occurred for the upstream transmission. Therefore, earlier efforts on Ethernet-PON have been concentrated on an upstream MAC protocol to avoid collision. But it is needed to control downstream traffic in practical access network, where the network provider limits available bandwidth according to the number of users. In this paper, we propose a traffic control scheme for supporting the fairness of the downstream bandwidth. The objective of this algorithm is to guarantee the fairness of ONUs while maintaining good performance. In order to do this, we define the service probability that considers the past traffic information for downstream, the number of tokens and the relative size of negotiated bandwidth. We develop the simulation model for Ethernet-PON to evaluate the rate-limiting algorithm by using AWESIM. Some results are evaluated and analyzed in terms of defined fairness factor, delay and dropping rate under various scenario.

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

Congestion Degree Based Available Bandwidth Estimation Method for Enhancement of UDT Fairness (UDT 플로우 간 공평성 향상을 위한 혼잡도 기반의 가용대역폭 추정 기법)

  • Park, Jongseon;Jang, Hyunhee;Cho, Gihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.63-73
    • /
    • 2015
  • In the end to end data transfer protocols, it is very important to correctly estimate available bandwidth. In UDT (UDP based Data Transfer), receiver estimates the MTR (Maximum Transfer Rate) of the current link using pair packets transmitted periodically from sender and, then sender finally decides the MTR through EWMA (Exponential Weighted Moving Average) algorithm. Here, MTR has to be exactly estimated because available bandwidth is calculated with difference of MTR and current transfer rate. However, when network is congested due to traffic load and where competing flows are coexisted, it bring about a severe fairness problem. This paper proposes a congestion degree based MTR estimation algorithm. Here, the congestion degree stands a relative index for current congestion status on bottleneck link, which is calculated with arriving intervals of a pair packets. The algorithm try to more classify depending on the congestion degree to estimate more actual available bandwidth. With the network simulation results, our proposed method showed that the fairness problem among the competing flows is significantly resolved in comparison with that of UDT.

An Efficient Cell Control Scheme for Internet Traffic Service in PNNI Networks (PNNI 망에서 인터넷 트래픽 서비스를 위한 효율적 셀 제어 기법)

  • Kim Byun-Gon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.15-21
    • /
    • 2004
  • The Guaranteed Bandwidth Rate scheme has been designed to accomodate non-real-time applications, such as Internet based traffic in Pm networks. The Guaranteed Bandwidth Rate scheme not only guarantees a minimum throughput at the frame level, but also supports a fair share of available resources. In this paper, we propose a cell control algorithm which can improve the fairness and the throughput through the traffic control in PM networks. For the evaluation of the proposed scheme, we compare proposed scheme with the existing scheme in the fairness and the throughput. Simulation results show that proposed scheme can improve the fairness and throughput than the existing scheme.

Adaptive Cooperative Spectrum Sharing Based on Fairness and Total Profit in Cognitive Radio Networks

  • Chen, Jian;Zhang, Xiao;Kuo, Yonghong
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.512-519
    • /
    • 2010
  • A cooperative model is presented to enable sharing of the spectrum with secondary users. Compared with the optimal model and competitive model, the cooperative model could reach the maximum total profit for secondary users with better fairness. The cooperative model is built based on the Nash equilibrium. Then a conceding factor is introduced so that the total spectrum required from secondary users will decrease. It also results in a decrease in cost which the primary user charges to the secondary users. The optimum solution, which is the maximum total profit for the secondary users, is called the collusion state. It is possible that secondary users may leave the collusion state to pursue the maximum of individual profit. The stability of the algorithm is discussed by introducing a vindictive factor to inhabit the motive of deviation. In practice, the number of secondary users may change. Adaptive methods have been used to deal with the changing number of secondary users. Both the total profit and fairness are considered in the spectrum allocating. The shared spectrum is 11.3893 with a total profit of 65.2378 in the competitive model. In the cooperative model, the shared spectrum is 8.5856 with the total profit of 73.4963. The numerical results reveal the effectiveness of the cooperative model.