• Title/Summary/Keyword: Failure-Function Matrix

Search Result 43, Processing Time 0.023 seconds

Modeling of local buckling in tubular steel frames by using plastic hinges with damage

  • Inglessis, Pether;Medina, Samuel;Lopez, Alexis;Febres, Rafael;Florez-Lopez, Julio
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.21-34
    • /
    • 2002
  • A model of the process of local buckling in tubular steel structural elements is presented. It is assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed structures subjected to monotonic loadings. Based on this damage model, a new finite element that can describe the development of local buckling is proposed. The element is the assemblage of an elastic beamcolumn and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the yielding function and the damage evolution law of the two hinges define the new finite element. In order to verify model and finite element, several small-scale frames were tested in laboratory under monotonic loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were simulated with the new finite element and comparison between model and test is presented and discussed.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Analysis of the Gene Expression by Laser Capture Microdissection (III) -Microarray Analysis of the Gene Expression at the Mouse Uterine Luminal Epithelium of the Implantation Sites during Apposition Period- (Laser Capture Microdissection을 이용한 유전자 발현 연구 (III) -생쥐 착상 부위 자궁 내강상피 조직에서 배아 병치 기간 동안 일어나는 유전자 발현에 관한 Microarray 분석-)

  • Yoon, Se-Jin;Jeon, Eun-Hyun;Park, Chang-Eun;Ko, Jung-Jae;Choi, Dong-Hee;Cha, Kwang-Yul;Kim, Se-Nyun;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.4
    • /
    • pp.323-335
    • /
    • 2002
  • Object: The present study was accomplished to obtain a gene expression profile of the luminal epithelium during embryo apposition in comparison of implantation (1M) and interimplantation (INTER) sites. Material and Method: The mouse uterine luminal epithelium from IM and INTER sites were sampled on day 4.5 (Day of vaginal plug = day 0.5) by Laser Captured Microdissection (LCM). RNA was extracted from LCM captured epithelium, amplified, labeled and hybridized to microarrays. Results from microarray hybridization were analyzed by Significance Analysis of Microarrays (SAM) method. Differential expression of some genes was confirmed by LCM followed by RT-PCR. Results: Comparison of IM and INTER sites by SAM identified 73 genes most highly ranked at IM, while 13 genes at the INTER sites, within the estimated false discovery rate (FDR) of 0.163. Among 73 genes at IM, 20 were EST/unknown function, and the remain 53 were categorized to the structural, cell cycle, gene/protein expression, immune reaction, invasion, metabolism, oxidative stress, and signal transduction. Of the 24 structural genes, 14 were related especially to extracellular matrix and tissue remodeling. Meanwhile, among 13 genes up-regulated at INTER, 8 genes were EST/unknown function, and the rest 5 were related to metabolism, signal transduction, and gene/protein expression. Among these 58 (53+5) genes with known functions, 13 genes (22.4%) were related with $Ca^{2+}$ for their function. Conclusions: Results of the present study suggest that 1) active tissue remodeling is occurring at the IM sites during embryo apposition, 2) the INTER sites are relatively quiescent than IM sites, and 3) the $Ca^{2+}$ may be a crucial for apposition. Search for human homologue of those genes expressed in the mouse luminal epithelium during apposition will help to understand the implantation process and/or implantation failure in humans.

An Effect of Aging and Thermocycling on the Tensile Strength of Restorative Composite Resins (시효와 열순환 처리가 수복용 복합레진의 인장강도에 미치는 영향)

  • Lee, Mi-Jeong;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • The purpose of this study was to evaluate effect of aging and thermocycling on the tensile strength of restorative composite resins. Eight commercially available light-cured restorative composites (Heliomolar: HM, Palfique Estelite: PE, Spectrum: ST, UniFil-F: UF, Z100: ZH, Clearfil AP-X: CA, P60: PS, and Palfique Toughwell: PT) were selected as experimental materials. Rectangular-shaped tensile test specimens were fabricated in a teflon mold giving 5 mm in gauge length and 2 mm in thickness. All samples were stored in distilled water at $37^{\circ}C$ for 100 days. Every 10 days, specimens were thermocycled for 1,000 cycles with 15 seconds of dwelling time in each $5^{\circ}C$ and $55^{\circ}C$ water baths. Tensile testing was carried out at a crosshead speed of 0.5 mm/min and fracture surfaces were observed with a scanning electron microscope. The results obtained were summarized as follows; 1. The strength degradation of thermocycled group was severer than that of the aged group (P<0.01). 2. The tensile strength of the CA and ST groups were significantly higher than that of other groups after thermocycling treatment (P<0.05). 3. Fracture surfaces showed that the composite resin failure developed along the matrix and the filler/resin interface region.

Markers of Collagen Change in Chronic Secondary Renal Disease Model in Rat (만성 속발성 신질환 모델동물에서 콜라젠 변화의 지표)

  • 남정석;김기영;이영순
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 1996
  • In order to develop a suitable secondary renal disease model and diagnostic markers of renal disease in the rat, the change of PIIIP (aminoterminal procollagen III peptide) in serum and hydroxyproline levels in the renal tissue that reflect the synthesis of extracellular matrix (ECM) during development of experimental renal diseases were observed. Two types of experimental primary diseases, diabetes mellitus administrated by streptozotocin (STZ, 75 mg/kg, i.p.) and liver cirrhosis produced by bile duct ligation/scission (BDL/s) operation, were induced. The hydroxyproline level increased according to the high PIIIP and NCl(carboxyterminal procollagen IV peptide) in Western blot analysis as early as 1 week in the STZ treated-rat kidney. Increased renal ECM was observed at 15 weeks in STZ and BDL/s model under the microscopic examination. High PAS positive reaction was found in capillary basement membrane in STZ treated-rats and mesangium in BDL/s operated rats at this time, showing the histological characteristics of diabetic nephropathy and cirrhotic glomerulonephritis in human, respectively. Such secondary renal failure were supported by additional tests including urinalysis and renal function test. The serum PIIIP detected by ELISA was a useful parameter to estimate synthesis rate of renal ECM during development of renal disease without extrarenal fibrosis i.e. liver cirrhosis in rats. This study is proposed that STZ treatment or BDL/s operation may be a suitable experimental animal model for the induction and development of chronic secondary renal diseases. Morover, it was found that hydroxyproline level in renal tissues was a good parameter of the change of renal ECM at the early stage of the diseases without apparent histological changes. Especially, serum PIIIP could be a choice as a diagnostic or prognostic marker during the development of renal diseases in rats.

  • PDF

Nondestructive Interfacial Evaluation and fiber fracture Source Location of Single-Fiber/Epoxy Composite using Micromechanical Technique and Acoustic Emission (음향방출과 미세역학적시험법을 이용한 단일섬유강화 에폭시 복합재료의 비파지적 섬유파단 위치표정 및 계면물성 평가)

  • Park, Joung-Man;Kong, Jin-Woo;Kim, Dae-Sik;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.418-428
    • /
    • 2003
  • Fiber fracture is one of the dominant failure phenomena affecting the total mechanical Performance of the composites. Fiber fracture locations were measured through the conventional optical microscope and the nondestructive acoustic emission (AE) technique and then were compared together as a function of the epoxy matrix modulus and the fiber surface treatment by the electrodeposition method (ED). Interfacial shear strength (IFSS) was measured using tensile fragmentation test in combination of AE method. ED treatment of the fiber surface enlarged the number of fiber fracture locations in comparison to the untreated case. The number of fiber fracture events measured by the AE method was less than optically obtained one. However, fiber fracture locations determined by AE detection corresponded with those by optical observation with small errors. The source location of fiber breaks by AE analysis could be a nondestructive, valuable method to measure interfacial shear strength (IFSS) of matrix in non-, semi- and/or transparent polymer composites.

Endothelial-specific deletion of Ets-1 attenuates Angiotensin II-induced cardiac fibrosis via suppression of endothelial-to-mesenchymal transition

  • Xu, Lian;Fu, Mengxia;Chen, Dongrui;Han, Weiqing;Ostrowski, Michael C.;Grossfeld, Paul;Gao, Pingjin;Ye, Maoqing
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.595-600
    • /
    • 2019
  • Cardiac fibrosis is a common feature in chronic hypertension patients with advanced heart failure, and endothelial-to-mesenchymal transition (EndMT) is known to promote Angiotensin II (Ang II)-mediated cardiac fibrosis. Previous studies have suggested a potential role for the transcription factor, ETS-1, in Ang II-mediated cardiac remodeling, however the mechanism are not well defined. In this study, we found that mice with endothelial Ets-1 deletion showed reduced cardiac fibrosis and hypertrophy following Ang II infusion. The reduced cardiac fibrosis was accompanied by decreased expression of fibrotic matrix genes, reduced EndMT with decreased Snail, Slug, Twist, and ZEB1 expression, as well as reduced cardiac hypertrophy and expression of hypertrophy-associated genes was observed. In vitro studies using cultured H5V cells further confirmed that ETS-1 knockdown inhibited $TGF-{\beta}1$-induced EndMT. This study revealed that deletion of endothelial Ets-1 attenuated Ang II-induced cardiac fibrosis via inhibition of EndMT, indicating an important ETS-1 function in mediating EndMT. Inhibition of ETS-1 could be a potential therapeutic strategy for treatment of heart failure secondary to chronic hypertension.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Characterization of Placental Proteins in Bovine Somatic Cell Clone Fetuses

  • Woo, Jei-Hyun;Ko, Yeoung-Gyu;Kim, Bong-Ki;Kim, Jong-Mu;Lee, Youn-Su;Kim, Nam-Yun;Im, Gi-Sun;Yang, Boung-Chul;Seong, Hwan-Hoo;Jung, Jin-Kwan;Kwun, Moo-Sik;Chung, Hak-Jae
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2005
  • Somatic cell nuclear transfer in cattle has limited efficiency in terms of production of live offspring due to high incidence of fetal failure after embryo transfer to recipients. Such low efficiency of cloning could possibly arise from abnormal and poorly developed placenta. In the present study the placental proteome in late pregnancy established from in vitro fertilization (IVF) and nuclear transfer (NT) was analysed. Proteome alternation was tested using two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF). Comparing placenta from NT embryos to those from IVF counterparts, significant changes in expression level were found in 18 proteins. Of these proteins 12 were not expressed in NT placenta but expressed in IVF counterpart, whereas the expression of the other 6 proteins was limited only in NT placenta. Among these proteins, cytokeratin 8 and vimentin are considered to be involved in regulation of post-implantation development. In particular, cytokeratin 8 and vimentin may be used as makers for placental development during pregnancy because their expression levels changed considerably in NT placental tissue compared with its IVF counterpart. Data from 2-DE suggest that protein expression was disorientated in late pregnancy from NT, but this distortion was eliminated with progression of pregnancy. These findings demonstrate abnormal placental development during late pregnancy from NT and suggest that alterations of specific placental protein expression may be involved in abnormal function of placenta.

Recent Advances in the Studies of Self-Incompatibility of plants (식물의 자가불화합성, 최근의 진보)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF