• Title/Summary/Keyword: Failure ratio

Search Result 2,011, Processing Time 0.025 seconds

An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • 최창익;박동규;손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

Failure Behavior Analysis of R.C Beams using LS-DYNA (LS-DYNA를 이용한 철근 콘크리트 보의 파괴 거동 해석)

  • Park, Gun;Hong, Ki-Nam;Hang, Sang-Hoon;Kwon, Yong-Gil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.297-300
    • /
    • 2008
  • This study focuses on the evaluation of efficiency of the explicit FEM program LS-DYNA to predict the failure behavior of reinforced concrete. Analysis variables of reinforced concrete beams were longitudinal bar ratio, shear steel ratio and span-depth ratio. Failure behavior of reinforced concrete beams was approximately simulated by LS-DYNA.

  • PDF

Effect of Steel Reinforcement Ratio on the Flexural Behavior of RC Beams Strengthened with CFRP Sheets (탄소섬유쉬트로 보강된 RC부재의 철근량에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • Experimental study has been performed in order to evaluate the effects of steel reinforcement ratio on the flexural behavior of RC beams strengthened with CFRP sheets. The steel reinforcement ratio of $0.78%({\rho}_s/{\rho}_b=24%)$ is selected to have balance failure when control RC beams were strengthened with 1 ply CFRP sheet. Total 6 half-scale specimens were manufactured including each unstrengthened specimens, which have 3 different reinforcement ratios. The specimens strengthened with CFRP sheet consist of under- or over-reinforced beams for the balanced failure condition. Moreover, the behavior of un strengthened or strengthened beams were compared to evaluate flexural performance. The results of this study show that the over-reinforced specimens were failed by concrete crushing prior to CFRP sheet failure by debonding or rupture. On the contrary, the under-reinforced specimen were failed by rupture of CFRP sheet.

  • PDF

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

Failure Detection Using Adaptive Predictor (적응예측기를 이용한 고장파악방법)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.210-217
    • /
    • 1990
  • For the failure detection of dynamic systems, processing the residuals from the observer of the estimator is the most general method. A failure detection method which use an adaptive predictor to separate the effect of sensor failure from the additive noise in the residuals of a Kalman filter that is employed as an estimator of a dynamic system is addressed here. In the method, the property of the residuals of an optimal Kalman estimator is exploited. The simulation results of this method shows that the proposed method is superior to the sequential probability ratio test for a small failure magnitude.

  • PDF

Shear capacity of Unreinforced Masonry Wall with Opening (개구부를 갖는 조적벽체의 전단내력에 관한 연구)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.69-72
    • /
    • 2006
  • The objective of this study is to find out the shear capacity of URM wall and the variables that affect the shear capacity of URM wall such as the opening and the aspect ratio, considering four kinds of failure modes, sliding shear failure, toe crushing failure, and diagonal shear failure. The main varialble is the shape of opening of URM walls. First URM has one door, second has one window, third hase one door and one window, the last has two windows. The test results of URM with openings show that the specimens are governed by rocking failure mode.

  • PDF

Theoretical study of sleeved compression members considering the core protrusion

  • Zhang, Chenhui;Deng, Changgen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.783-792
    • /
    • 2018
  • This paper presents a detailed theoretical study of the sleeved compression members based on a mechanical model. In the mechanical model, the core protrusion above sleeve and the contact force between the core and sleeve are specially taken into account. Via the theoretical analyses, load-displacement relationships of the sleeved compression members are obtained and verified by the experimental results. On the basis of the core moment distribution changing with the increase of the applied axial load, failure mechanism of the sleeved compression members is assumed and proved to be consistent with the experimental results in terms of the failure modes and the ultimate bearing capacities. A parametric study is conducted to quantify how essential factors including the core protrusion length above sleeve, stiffness ratio of the core to sleeve, core slenderness ratio and gap between the core and sleeve affect the mechanical behaviors of the sleeved compression members, and it is concluded that the constrained effect of the sleeve is overestimated neglecting the core protrusion; the improvement of ultimate bearing capacity for the sleeved compression member is considered to be decreasing with the decrease of the core slenderness ratio and for the sleeved compression member with core of small slenderness ratio, small gap and small stiffness ratio are preferred to obtain larger ultimate bearing capacity and stiffness.

A Study on the AE Characteristics of the Carbon Fiber Composite Material (탄소섬유 복합재료의 AE 특성에 관한 연구)

  • 옹장우;이영신;심봉식;지용관;주영상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.105-114
    • /
    • 1989
  • This study was carried out to measure the mechanical properties and the acoustic emission (AE) characteristics of the carbon fiber reinforced composites of several types of the stacking sequence. AE signals were detected during the tensile tests. The number of ringdown counts, total ringdown counts were plotted together with the load-displacement curves. The tensile load-displacement behavior of specimen is compared and discussed based on the measured AE properties in relation to the failure mechanism. With the increase of load, AE signals increased. This showed that failure had being propagated by matrix deformation and cracking, delamination, fiber debonding and breakage. Felicity ratio has been obtained by observation of ;the Kaiser effect according to the variation of load ratio. The reloading tests showed that the felicity ratio decreased obviously when the load ratio or damage increased. These AE characteristics are hopeful to be employed as the criteria to evaluate the failure processes of composites.

Prognostic Role of Right VentricularPulmonary Artery Coupling Assessed by TAPSE/PASP Ratio in Patients With Acute Heart Failure

  • Youngnam Bok;Ji-Yeon Kim;Jae-Hyeong Park
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.4
    • /
    • pp.200-206
    • /
    • 2023
  • BACKGROUND: Right ventricular (RV) dysfunction is a significant risk of major adverse cardiac events in patients with acute heart failure (AHF). In this study, we evaluated RV-pulmonary artery (PA) coupling, assessed by tricuspid annular plane systolic excursion (TAPSE)/pulmonary artery systolic pressure (PASP) and assessed its prognostic significance, in AHF patients. METHODS: We measured the TAPSE/PASP ratio and analyzed its correlations with other echocardiographic parameters. Additionally, we assessed its prognostic role in AHF patients. RESULTS: A total of 1147 patients were included in the analysis (575 men, aged 70.81 ± 13.56 years). TAPSE/PASP ratio exhibited significant correlations with left ventricular (LV) ejection fraction(r = 0.243, p < 0.001), left atrial (LA) diameter(r = -0.320, p < 0.001), left atrial global longitudinal strain (LAGLS, r = 0.496, p < 0.001), mitral E/E' ratio(r = -0.337, p < 0.001), and right ventricular fractional area change (RVFAC, r = 0.496, p < 0.001). During the median follow-up duration of 29.0 months, a total of 387 patients (33.7%) died. In the univariate analysis, PASP, TAPSE, and TAPSE/PASP ratio were significant predictors of mortality. After the multivariate analysis, TAPSE/PASP ratio remained a statistically significant parameter for all-cause mortality (hazard ratio [HR], 0.453; p = 0.037) after adjusting for other parameters. In the receiver operating curve analysis, the optimal cut-off level of TAPSE/PASP ratio for predicting mortality was 0.33 (area under the curve = 0.576, p < 0.001), with a sensitivity of 65% and a specificity of 47%. TAPSE/PASP ratio < 0.33 was associated with an increased risk of mortality after adjusting for other variables (HR, 1.306; p = 0.025). CONCLUSIONS: In AHF patients, TAPSE/PASP ratio demonstrated significant associations with RVFAC, LA diameter and LAGLS. Moreover, a decreased TAPSE/PASP ratio < 0.33 was identified as a poor prognostic factor for mortality.