• 제목/요약/키워드: Failure ratio

검색결과 2,059건 처리시간 0.028초

상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링 (The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes)

  • 박수완;김정욱;전환돈
    • 한국물환경학회지
    • /
    • 제23권1호
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

Early implant failure: a retrospective analysis of contributing factors

  • Kang, Dae-Young;Kim, Myeongjin;Lee, Sung-Jo;Cho, In-Woo;Shin, Hyun-Seung;Caballe-Serrano, Jordi;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • 제49권5호
    • /
    • pp.287-298
    • /
    • 2019
  • Purpose: The aim of this retrospective study was to determine the prevalence of early implant failure using a single implant system and to identify the factors contributing to early implant failure. Methods: Patients who received implant treatment with a single implant system ($Luna^{(R)}$, Shinhung, Seoul, Korea) at Dankook University Dental Hospital from 2015 to 2017 were enrolled. The following data were collected for analysis: sex and age of the patient, seniority of the surgeon, diameter and length of the implant, position in the dental arch, access approach for sinus-floor elevation, and type of guided bone regeneration (GBR) procedure. The effect of each predictor was evaluated using the crude hazard ratio and the adjusted hazard ratio (aHR) in univariate and multivariate Cox regression analyses, respectively. Results: This study analyzed 1,031 implants in 409 patients, who comprised 169 females and 240 males with a median age of 54 years (interquartile range [IQR], 47-61 years) and were followed up for a median of 7.2 months (IQR, 5.6-9.9 months) after implant placement. Thirty-five implants were removed prior to final prosthesis delivery, and the cumulative survival rate in the early phase at the implant level was 95.6%. Multivariate regression analysis revealed that seniority of the surgeon (residents: aHR=2.86; 95% confidence interval [CI], 1.37-5.94) and the jaw in which the implant was placed (mandible: aHR=2.31; 95% CI, 1.12-4.76) exerted statistically significant effects on early implant failure after adjusting for sex, age, dimensions of the implant, and type of GBR procedure (preoperative and/or simultaneous) (P<0.05). Conclusions: Prospective studies are warranted to further elucidate the factors contributing to early implant failure. In the meantime, surgeons should receive appropriate training and carefully select the bone bed in order to minimize the risk of early implant failure.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Pharmacokinetics of Diltiazem and its Major Metabolite, Deacetyldiltiazem after Oral Administration of Diltiazem in Mild and Medium Folate-Induced Renal Failure Rabbits

  • Choi, Jun-Shik;Lee, Jin-Hwan;Burm, Jin-Pil
    • Archives of Pharmacal Research
    • /
    • 제24권4호
    • /
    • pp.333-337
    • /
    • 2001
  • The pharmacokinetic changes of diltiazem (DTZ) and its main metabolite, deacetyldiltiazem (DAD) were studied after oral administration of DTZ to normal rabbits and mild and medium folate-induced renal failure rabbits. DTZ 10 mg/kg was given to the rabbits either orally (n=6). Plasma concentrations of DTZ and DAD were determined by a high performance liquid chromatography assay. The area under the plasma concentration-time curves (AUC) and maximum plasma concentration ($C_{max}$) of DTZ were significantly increased in mild and medium folate-induced renal failure rabbits. The metabolite ratio of the DTZ to DAD were significantly decreased in mild and medium folate-induced renal failure rabbits. The volume of distribution ($V_{d}$) and total body clearance ($CL_{t}$) of DTZ were significantly decreased in mild and medium folate-induced renal failure rabbits. The elimination rate constant ($\beta$) of DTZ was significantly decreased in folate-induced renal failure rabbits, but that of DAD was significantly increased. These findings suggest that the hepatic metabolism of DTZ was inhibited and the $V_{d}$, $CL_{t}$ and $\beta$ of DTZ were significantly decreased in mild and medium folate-induced renal failure rabbits.

  • PDF

Pharmacokinetics of Acebutolol and Its Main Metabolite, Diacetolol After Oral Administration of Acebutolol in Rabbits with Carbon Tetrachloride-Induced Hepatic Failure

  • Choi, Jun-Shik;Burm, Jin-Pil
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.541-545
    • /
    • 2002
  • Pharmacokinetic characteristics of Acebutolol and its main metabolite, diacetolol, following a single 10 mg/kg oral dose, were investigated in rabbits with carbon tetrachloride-induced hepatic failure. Plasma concentrations of acebutolol and diacetolol were determined by a high performance liquid chromatography assay. The area under the plasma concentration-time curves (AUC) and maximum plasma concentration ($C_{max}$) of acebutolol were significantly increased in moderate and severe carbon tetrachloride-induced hepatic failure rabbits. The ratio of the diacetolol to total acebutolol in plasma (i.e., metabolite percentage rate) was significantly decreased in moderate and severe carbon tetrachloride-induced hepatic failure rabbits. Volume of distribution ($V_{d}$) and total body clearance ($CL_{t}$) of acebutolol were significantly decreased in moderate and severe carbon tetrachloride-induced hepatic failure rabbits. Slope of terminal phase ($\beta$) of acebutolol was significantly decreased in hepatic failure rabbits. These findings suggest that the $V_{d},{\;}CL_{t}$ and $\beta$ of acebutolol were significantly decreased as a result of inhibition of the hepatic metabolism in moderate to severe hepatic failure rabbits. Therefore, dose adjustment may be necessary for acebutolol in hypertensive patients with hepatic damage.

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength

  • Shi, Yunwei;Luo, Xianqi;Wang, Pingfan
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.375-384
    • /
    • 2022
  • The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.

Computer용 Monitor에 대한 신뢰성 예측.확인 방법의 응용 (A Study on A, pp.ication of Reliability Prediction & Demonstration Methods for Computer Monitor)

  • 박종만;정수일;김재주
    • 품질경영학회지
    • /
    • 제25권3호
    • /
    • pp.96-107
    • /
    • 1997
  • The recent stream to reliability prediction is that it is totally inclusive in depth to consider even the operating and environmental condition at the level of finished goods as well as component itselves. In this study, firstly we present the reliability prediction methods by entire failure rate model which failure rate at the system level is added to the failure rate model at the component level. Secondly we build up the improved bases of reliability demonstration through a, pp.ication of Kaplan-Meier, Cumulative hazard, Johnson's methods as non-parametric and Maximum Likelihood Estimator under exponential & Weibull distribution as parametric. And also present the methods of curve fitting to piecewise failure rate under Weibull distribution, PRST (Probability Ratio Sequential Test), curve fitting to S-shaped reliability growth curve, computer programs of each methods. Lastly we show the practical for determination of optimal burn-in time as a method of reliability enhancement, and also verify the practical usefulness of the above study through the a, pp.ication of failure and test data during 1 year.

  • PDF

쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델 (Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads)

  • 김동호;김경진;이봉학;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

회전익기 연료펌프 안전성 평가 분석 (Safety Assessment Analysis of the Rotorcraft Fuel Pumps)

  • 이정훈;박장원
    • 한국항공운항학회지
    • /
    • 제21권2호
    • /
    • pp.21-25
    • /
    • 2013
  • The system and components for aircraft are required the design data on which the safety requirements are properly reflected for their certification. This paper presents the procedure and results of a safety assessments analysis for the rotorcraft fuel pumps in oder to confirm and verify them. The fuel pumps design assessment must be performed, including a detailed failure analysis to identify all failures that will prevent continued safe flight or safe landing. In order to assess the fuel pumps design safety, not only system safety hazard analysis and but FTA(Fault Tree Analysis) for proofing the safety objective of the fuel pumps are performed. The results of the safety assessment for fuel pumps validate that no single failure or malfunction could result in catastrophic failure or critical accidents of the rotorcraft.