• Title/Summary/Keyword: Failure mechanisms

Search Result 691, Processing Time 0.023 seconds

Analysis of Differentially Expressed Genes in Cloned Bovine Placenta

  • Park, Hee-Ja;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Yang, Byoung-Chul;Seong, Hwan-Hoo;Oh, Seok-Doo;Hwang, Sue-Yun;Min, Kwan-Sik;Yoon, Jong-Taek
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • Placenta is the main nutrition source for the fetus during pregnancy. Thus, it has a pivotal function in the pregnant process. Many functions of the placenta have been elucidated. An abnormal placenta is associated with a high rate of pregnancy failure in somatic cloned bovine. Differentially expressed genes (DEGs) were examined in a comparison between normal and cloned bovine placenta using annealing control primer (ACP)-based GeneFishing PCR. Using 120 ACPs, nearly 80 genes were identified and the fragments of 42 DEGs were sequenced. 38 of these genes were known genes and four were unknown. To determine the DEGs result, six target clones expressing on one-side of a normal and a clone placenta were selected. Through an analysis of the target genes using the real-time PCR, the expressing pattern was found to be somewhat different from the DEGs. Additionally, several genes appeared with the same expression pattern. Taken together, this suggests that the target genes would be essential for research into what influences the placental formative mechanisms during fetal development.

Roles of Conceptus Secretory Proteins in Establishment and Maintenance of Pregnancy in Ruminants

  • Bazer, Fuller W.;Song, Gwon-Hwa;Thatcher, William W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • Reproduction in ruminant species is a highly complex biological process requiring a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling and regulation of gene expression by uterine epithelial and stromal cells. The uterus provide a microenvironment in which molecules secreted by uterine epithelia and transported into the uterine lumen represent histotroph, also known as the secretome, that are required for growth and development of the conceptus and receptivity of the uterus to implantation by the elongating conceptus. Pregnancy recognition signaling as related to sustaining the functional lifespan of the corpora lutea, is required to sustain the functional life-span of corpora lutea for production of progesterone which is essential for uterine functions supportive of implantation and placentation required for successful outcomes of pregnancy. It is within the peri-implantation period that most embryonic deaths occur in ruminants due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. The endocrine status of the pregnant ruminant and her nutritional status are critical for successful establishment and maintenance of pregnancy. The challenge is to understand the complexity of key mechanisms that are characteristic of successful reproduction in humans and animals and to use that knowledge to enhance fertility and reproductive health of ruminant species in livestock enterprises.

Nonoperative Treatment for Abdominal Injury in Multiple Trauma Patients: Experience in the Metropolitan Tertiary Hospital in Korea (2009~2014) (다발성 손상 환자에서의 복부 손상에 대한 비수술적 치료: 권역 외상 센터가 아닌 3차 병원의 치료 경험(2009~2014))

  • Oh, Seung-Young;Suh, Gil Joon
    • Journal of Trauma and Injury
    • /
    • v.28 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • The aim of this study is to present a nonoperative treatment for abdominal injuries in patients with multiple traumas and to discuss the role of metropolitan tertiary hospital, non-regional trauma centers. We collected data from patients with multiple traumas including abdominal injuries from 2009 to 2014. Patient characteristics, associated injuries, short-term outcomes and departments that managed the patients overall were analyzed. Based on treatment modalities for abdominal injury, patients were divided into two groups: the operative treatment group and the nonoperative treatment group. We compared differences in patient characteristics, injury mechanisms, initial vital signs, detailed injury types, lengths of hospital and ICU stays. Of the 167 patients with multiple traumas, abdominal injuries were found in 57 patients. The injury mechanism for 44 patients (77.2%) was traffic accidents, and associated extra-abdominal injuries were shown in 45 patients (78.9%). The mean lengths of hospital and ICU stays for the 57 patients were 36.4 days and 8.3 days, respectively. The in-hospital mortality rate was 8.8%. Ten patients (17.5%) were treated operatively, and 47 patients (82.5%) were treated nonoperatively. Among the 47 patients in the nonoperative treatment group, 17 patients received embolization, and 3 patients underwent a percutaneous drainage procedure. Operative treatments were used more in patients with injuries to the pancreas and bowel. No patient required additional surgery or died due to the failure of nonoperative treatment. No differences in the clinical characteristics except for the detailed injury type were observed between the two groups. In appropriately selected patients with multiple traumas including abdominal injuries, nonoperative treatment is a safe and feasible. For rapid and accurate managements of these patients, well-trained trauma surgeons who can manage problems with the various systems in the human body and who can decide whether nonoperative treatment is appropriate or not are required.

  • PDF

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

  • Kim, Yikwon;Han, Dohyun;Min, Hophil;Jin, Jonghwa;Yi, Eugene C.;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.888-898
    • /
    • 2014
  • Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and -sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.

Stress Analysis for Bendable Electronic Module Under Thermal-Hygroscopic Complex Loads (열·습도 복합하중에서의 유연성 전자모듈에 대한 구조해석)

  • Han, Changwoon;Oh, Chulmin;Hong, Wonsik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.619-624
    • /
    • 2013
  • A bendable electronic module is developed. In this module, thin silicon electronic chips are embedded in a polymer-based encapsulating adhesive between flexible copper-clad polyimide layers. During the qualification test of a harshly thermal-hygroscopic complex loading condition, delaminations occur inside the module layers. A finite element model is developed for the module. To investigate the effect of hygroscopic stress on delamination, the results of the thermal and thermal-hygroscopic loads are compared. The analysis results reveal that the hygroscopic effect more strongly affects delamination than does the thermal effect. The potential failure mechanisms of the module are investigated based on the stress analysis.

Behavior of stiffened and unstiffened CFT under concentric loading, An experimental study

  • Deifalla, Ahmed F.;Fattouh, Fattouh M.;Fawzy, Mona M.;Hussein, Ibrahim S.
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.793-803
    • /
    • 2019
  • Concrete-filled steel tubular (CFST) beam-columns are widely used owing to their good performance. They have high strength, ductility, large energy absorption capacity and low costs. Externally stiffened CFST beam-columns are not used widely due to insufficient design equations that consider all parameters affecting their behavior. Therefore, effect of various parameters (global, local slenderness ratio and adding hoop stiffeners) on the behavior of CFST columns is studied. An experimental study that includes twenty seven specimens is conducted to determine the effect of those parameters. Load capacities, vertical deflections, vertical strains and horizontal strains are all recorded for every specimen. Ratio between outer diameter (D) of pipes and thickness (t) is chosen to avoid local buckling according to different limits set by codes for the maximum D/t ratio. The study includes two loading methods on composite sections: steel only and steel with concrete. The case of loading on steel only, occurs in the connection zone, while the other load case occurs in steel beam connecting externally with the steel column wall. Two failure mechanisms of CFST columns are observed: yielding and global buckling. At early loading stages, steel wall in composite specimens dilated more than concrete so no full bond was achieved which weakened strength and stiffness of specimens. Adding stiffeners to the specimens increases the ultimate load by up to 25% due to redistribution of stresses between stiffener and steel column wall. Finally, design equations previously prepared are verified and found to be only applicable for medium and long columns.

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

Theoretical Background of Division of Role in Technology Financing Based on Uncertainty Implied in Industrial Technology Development (산업기술개발의 불확실성에 따른 금융지원의 역할분담에 관한 이론적 고찰)

  • 김선근
    • Journal of Technology Innovation
    • /
    • v.5 no.1
    • /
    • pp.206-222
    • /
    • 1997
  • The conventional analysis with which justifies government intervention of the private sector's innovation activities is the market failure approach. According to such analysis, fund allocation through autonomous market mechanisms is not optimal in technology financing because of the disparity between the desirable level of investment for society as a whole and that for private firms. To optimize the fund allocation, public policies such as subsidy, preferencial loan and venture capital investment programs are designed for technology development projects performed by private firms. They, however, have not been effective in increasing private investment for such projects. In most cases, it was found that little considerations given to the relationship between uncertainty embodied in technology development projects and each types of financing. With respect to optimizing fund allocation, technology development projects should be financed by different means according to their probability of success and the expected value of technology. Employing various theoretical models on financing decision-making we verify here that technology development projects to be supported by commercial banks or venture capital institutions is limited contingent upon levels of uncertainty adn expected value. Under the assumption that financial institutions are risk averse, loan or investment can be available only if the probability of success of the project is higher than the probability premium and the current market rate of interest. Therefore, the projects that have lower probability of success and/or small expected return are excluded from commercial loan or investment programs. However, the remaining projects, whose probability of success is low but with high expected return, may be applied under government subsidy programs. To achieve optimality of fund allocation and to activate technology financing, we conclude that there should be a systematic division of role among financial institutions including government commercial banks, and venture capital institutions.

  • PDF