• 제목/요약/키워드: Failure mechanism

검색결과 1,607건 처리시간 0.027초

전력용 피뢰기의 임펄스에 의한 파손과 대척 기술 (Fracture and Protection Technologies against Impulse of Power Arresters)

  • 한세원;조한구;김석수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2001
  • ZnO varistors have been widely used to protect power system and electronic system against overvoltages based on their excellent nonlinearity. In order to increase their protection capability, the fracture and protection technologies of arresters have to study according to their applications, namely ImA DC voltage, leakage currents, impulse residual voltages, withstanding capability to impulse surge, and energy absorption capability. ZnO varistors which have nonlinear current-voltage characteristic name a number of failure mechanism when ZnO elements absorb surge energies. Failure mode by thermal stress and Pin hole are among the most common failure mechanism at the high current surge current. In this study, the fracture mechaism of power arresters are introduced and protection technologies are researched. In particular the effect of thermal stress by surge currents to ZnO elements and methods against arc surge energy through withstand structure design of arrester are discussed.

  • PDF

AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구 (A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique)

  • 이진경;이준현;장일영
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성 (Axial crush and energy absorption characteristics of Aluminum/GERP hybrid square tube)

  • 김구현;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.168-171
    • /
    • 1999
  • For the axial crushing tests of various shape of tubes, it was reported that composite tubes need trigger mechanism to avoid brittle failure. In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tubes. Glass/Epoxy prepregs were wrapped around aluminum tube and co-cured. The failure of hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to maximum 34% in comparison with aluminum tube. Effective energy absorption is possible for inner aluminum tube because wrapped composite tube constrain the deflection of aluminum tube and reduce the folding length. The failure of hybrid composite tube was stable without trigger mechanism because inner aluminum tube could play the role of crack initiator and controller. Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure due to effective energy absorption capability, easy production, and simple application for RTM process.

  • PDF

침수조건에 따른 방탄재료의 성능변화와 파괴거동 분석 (Failure Mechanism Analysis and Performance Change of Ballistic Resistance Material on Wet Condition)

  • 태원석;김건인
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.803-810
    • /
    • 2013
  • In this paper, we have verified the performance of ballistic resistance material on wet condition. Considering Korea terrain, soldiers may face many rivers and streams. However, bullet-proof jacket has no waterproofing and there's no water-proof standard in Military. Wearing wet bullet-proof jacket, soldiers can't be protected properly because of the decrement of jacket. Thus, we measure the performance of existing material on wet condition and analyze failure mechanism in order to indicate factors to improve bullet-proof jacket.

가정용 리클라이너 소파의 전기 및 기구부에 대한 신뢰성시험 설계 (Reliability test design for Electric and movement apparatus of recliner sofa for home use)

  • 장인혁;형재필;임홍우;최연옥
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.259-265
    • /
    • 2018
  • In this paper, we propose a test method to evaluate the reliability of the recliner sofa in the early stage of production. In order to develop the test method, we analyzed the failure mechanism occurring in the field and designed the performance test, environmental test, accelerated life test methods based on the analysis of failure mechanism. The failure mechanism is reproduced by applying the designed test. The reliability of the recliner sofa can be verified at the production stage through the proposed test method.

파이핑에 의한 하천제방 붕괴 메카니즘 분석 및 대책공법 평가 (Analysis of River Levee Failure Mechanism by Piping and Remediation Method Evaluation)

  • 김진만;문인종
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.600-608
    • /
    • 2017
  • 제체 내 누수와 관련이 있는 파이핑(piping) 현상은 제방 내에 큰 공동이나 수로를 만들어 제체의 붕괴 및 부등 침하를 일으키고 최종적으로 하천제방의 붕괴를 초래한다. 따라서 파이핑 현상에 의한 제방 붕괴에 적절하게 대응하고, 이에 대한 적절한 대책공법을 마련하기 위해서는 파이핑 현상에 의한 제방 붕괴 메카니즘을 분석할 필요가 있다. 이 연구에서는 축소 모형시험과 대형 모형시험을 수행하여 파이핑에 의한 제방 붕괴 형상 및 메카니즘을 분석하였으며, 침투압 시험을 수행하여 파이핑 대책공법으로 제안된 Hydraulic well의 침투압 분포 특성을 평가하였다. 연구 결과, 축소 모형시험을 통해 파이핑 안전율이 낮을수록 제방 붕괴 형상이 뚜렷하게 나타났으며, 대형 모형시험에서는 파이핑으로 인한 제방의 국부적인 손상 유형을 파악할 수 있었다. 또한 Hydraulic well의 침투압 시험을 통해 well의 중심 아래에서 파이핑 억제 효과가 가장 큰 것으로 평가되었다. 연구 결과의 신뢰성을 향상시키기 위해서 다양하고 연계성이 있는 모형시험 조건을 적용한 추가연구가 필요하지만, 이 연구는 파이핑에 의한 제방 붕괴 메카니즘 분석 및 대책공법 마련에 대한 기초 연구자료로 활용이 가능하다고 판단된다.

고강도 콘크리트의 폭렬발생 및 폭렬저감 메커니즘에 관한 문헌적 고찰 (A Study on the Mechanism of Explosive Spalling and Spalling Prevention Methods of High-Strength Concrete in Fire Temperature)

  • 정희진;이재영;김재환;한병찬;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.313-316
    • /
    • 2008
  • Nowadays, the use of high strength concrete has become increasingly popular. Thus, the theory of this study gives a definition of HSC mechanism through study factors of spalling occurrence of HSC and solutions of failure mechanism. During the fire goes on, building structure using HSC causes explosive spalling and finally it gets to the breaking of the structure down. As a result of this failure mechanism, it remains to be investigated to prevent from explosive spalling of HSC and needs to provide basic problems of HSC at high temperature.

  • PDF

Head Reinforcement 인발강도를 위한 파괴 메캐니즘 (Failure Mechanism for Pull-Out Capacity of Headed Reinforcement)

  • 홍성걸;최동욱;권순영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.233-238
    • /
    • 2002
  • This study presents failure mechanisms for the pull-out strength of headed reinforcement for upper bound solution based on the limit theorem. The failure mechanisms to be presented follow the failure surface pattern of punching shear failure found in the joints of slab with a column. Several failure surfaces of the mechanisms have different characteristics for dissipation works and these mechanisms are able to interpret the role of bar details surrounding headed reinforcement.

  • PDF

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Experimental study of failure mechanisms in elliptic-braced steel frame

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas;Beheshti-Aval, S. Bahram
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.175-191
    • /
    • 2020
  • In this article, for the first time, the seismic behavior of elliptic-braced moment resisting frame (ELBRF) is assessed through a laboratory program and numerical analyses of FEM specifically focused on the development of global- and local-type failure mechanisms. The ELBRF as a new lateral braced system, when installed in the middle bay of the frames in the facade of a building, not only causes no problem to the opening space of the facade, but also improves the structural behavior. Quantitative and qualitative investigations were pursued to find out how elliptic braces would affect the failure mechanism of ELBRF structures exposed to seismic action as a nonlinear process. To this aim, an experimental test of a ½ scale single-story single-bay ELBRF specimen under cyclic quasi-static loading was run and the results were compared with those for X-bracing, knee-bracing, K-bracing, and diamond-bracing systems in a story base model. Nonlinear FEM analyses were carried out to evaluate failure mechanism, yield order of components, distribution of plasticity, degradation of structural nonlinear stiffness, distribution of internal forces, and energy dissipation capacity. The test results indicated that the yield of elliptic braces would delay the failure mode of adjacent elliptic columns and thus, help tolerate a significant nonlinear deformation to the point of ultimate failure. Symmetrical behavior, high energy absorption, appropriate stiffness, and high ductility in comparison with the conventional systems are some of the advantages of the proposed system.