• Title/Summary/Keyword: Failure life

Search Result 1,992, Processing Time 0.031 seconds

A Study on Trend Changes for Certain Parametric Families

  • Nam, Kyung Hyun;Park, Dong Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.93-101
    • /
    • 1995
  • We present a brief survey concerning the relations between mean residual life and failure rate. Change points of mean residual life and failure rate are known to be different in general and we explore such situations in this paper. A few parametric models which show bathtub-shaped failure rate are examined in details, including the shape of its corresponding mean residual life function. We give some graphical comparisons of trend changes of mean residual life and failure rate for various choices of parameters for each parametric model.

  • PDF

Prediction of life of SAPH45 steel with measured fracture time and strength (인장파단시간 및 응력측정에 의한 SAPH45의 수명예측)

  • 박종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.269-273
    • /
    • 1998
  • The failure of material structures or mechanical system is considered as a direct or indirect result of fatigue. In the design of mechanical structure for estimating of reliability, the prediction of failure life is the most important failure mode to be considered. However, because of a complicated behavior of fatigue in mechanical structure, the analysis of fatigue is in need of much researches on life prediction. This document presents a prediction of fatigue life of the SAPH45 steel, which is extensively for vehicle frame. The method using lethargy coefficient and stress distribution factor at pediction of fatigue life based on the consideration of the failure characteristics from the tensile test should be provided in this study.

  • PDF

Reliability Estimation of Door Hinge for Home Appliances (가전제품용 경첩의 신뢰성 추정)

  • 문지섭;김진우;이재국;이희진;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.303-311
    • /
    • 2004
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, B$_{10}$ life and its lower bound with 90% confidence at worst case use condition are estimated by analyzing the accelerated life test data.a.

  • PDF

A Path Analysis Model of Health-Related Quality of Life in Patients with Heart Failure (심부전 환자의 건강관련 삶의 질 경로분석 모형)

  • Kim, Yong Suk
    • Korean Journal of Adult Nursing
    • /
    • v.19 no.4
    • /
    • pp.547-555
    • /
    • 2007
  • Purpose: The purpose of this study was to test a hypothetical model of health-related quality of life in patients with heart failure. The hypothetical model was derived from the Wilson and Cleary's model, the Rector's model, and published research findings. Methods: Data from 103 patients with heart failure were analyzed to determine the best multivariate health-related quality of life model given variables derived from the prior studies. The statistics programs SPSS 12.0 and LISREL 8.7 program were used for descriptive statistics and covariance structure analysis respectively. Results: The overall fitness of the path final model was good(GFI=.97, AGFI=.95, NNFI=1.06, NFI=.96, p=.96). Symptoms were directly affected by gender. HYHA Class was directly affected by only gender. Physical functioning limitation was directly affected by exercise. Health perception was directly affected by economics, symptom, and physical functioning limitation. Depression was directly affected by exercise and health perception. Heath-related quality of life was directly affected by physical functioning limitation and depression, indirectly affected by gender, economics, exercise, symptoms, NYHA Class, and health perception. This path analysis model explained 51% of health-related quality of life in patients with heart failure. Conclusion: To improve of health-related quality of life with heart failure patients, it is necessary to make nursing interventions for physical functioning and depression.

  • PDF

Study for the Reliability Evaluation of a Volute Pump (벌류트 펌프의 신뢰성 평가에 관한 연구)

  • Jung, Dong Soo;Lee, Yong Bum;Kang, Bo Sik
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2018
  • The objective of this paper is to evaluate the reliability of a volute pump and presents test results through performance and life tests. The performance and life test methods were presented by analyzing the failure modes of the volute pump. Zero failure test time was calculated to evaluate the reliability of the volute pump and then, the test was performed under accelerated conditions. The test was also carried out to check the failure modes of the field conditions. This study can be provided to improve the product reliability through failure analysis of the volute pump. And failure cause of typical failure case has been investigated and improvement design has been presented. The performance test results of before and after the accelerated life test were presented to confirm the improved reliability of the volute pump.

Leakage Failure Determination Method of Pilot Pneumatic Directional Control Valve (파일럿형 공기압 방향제어 밸브의 누설 고장판정 기법에 관한 연구)

  • Kang, Bo Sik;Kim, Kyung Soo;Chang, Mu Seong
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.230-235
    • /
    • 2014
  • The failure modes of pneumatic directional control valves include leakage, wear of the spool seal, and sticking of the spool. Among them, the main failure mode of the valve is leakage. The leakage is caused by the wear of the spool seal. However, due to the characteristics of the seal material, the leakage rate is fluctuated a lot rather than constantly increased over time. If life analysis is performed using the first time data of leakage failure, predicted life cycles can be different from the real life cycles. This paper predicts life cycles of the pilot pneumatic directional control valve based on the three point moving average which considers the average of the fluctuating leakage rate.

The Prediction Of the Life To Failure Of the Printer Gear-Drive ASF Boss Using the FEM Analysis And the Statistical Method (FEM해석과 통계적 방법을 이용한 프린터 Gear-Drive ASF Boss의 피로수명 예측)

  • Lee, Jae-Hyuk;Lee, Jong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.147-152
    • /
    • 2000
  • The ASF(Automatic Sheets Feeders) part of the printer has many bosses supporting gear-trains. Steel-pin bosses are substituted for plastic mold bosses because of advantages such as cost reduction, convenience of manufacturing and accuracy in dimension, but they have a weak point such as fatigue fracture due to low material strength, which causes a serious problem in the reliability of product. To prevent the fatigue fracture of bosses, we should exactly estimate the life to failure of the various shapes of bosses. We take the linear FEM analysis and the statistical method in this paper to figure out the life to failure of bosses. The maximum stress and life to failure of bosses can be easily estimated by this method. This paper specifies how to figure out the life to failure of bosses.

  • PDF

Comparison of Proportional Hazards and Accelerated Failure Time Models in the Accelerated Life Tests

  • Jung, H.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • In the accelerated tests, the importance of correct failure analysis must be strongly emphasized. Understanding the failure mechanisms is requisite for designing and conducting successful accelerated life test. Under this presumption, a rational method must be identified to relate the results of accelerated tests quantitatively to the reliability or failure rates in use conditions, using a scientific acceleration transform. Most widely used models for relating the results of accelerated tests quantitatively to the reliability or failure rates in use conditions are an accelerated failure time model and a proportional hazards model. The purpose of this research is to compare the usability of the accelerated failure time model and proportional hazards model in the accelerated life tests.

  • PDF

Reliability for Failure Rates Different over Time Intervals (고장률이 시간 구간별로 다른 경우의 신뢰도)

  • Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.245-253
    • /
    • 2007
  • Failure rate serves as a pivotal role in reliability study. Of all, the constant failure rate is the most popularly used in field exercises. In reality, however, the electrical and electronic parts' life is represented by not only the constant failure rate but the decreasing and/or increasing failure rates. Explicit consideration and incorporation of them into the model development may yield more desirable results. In this study, we built a reliability model for failure rates varying over time intervals and derived well known measures such as probability density function, reliability function, mean life, moments, and mission time. We then evaluated mean life with consideration of the first-year multiplier and compared the results those with constant failure rate. The results given in the study may provide a reference applying for practical decision making.

  • PDF

Reliability Estimation of Door Hinge for Rome Appliances (가전제품용 경첩의 신뢰성 추정)

  • Kim Jin Woo;Shin Jae Chul;Kim Myung Soo;Moon Ji Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.689-697
    • /
    • 2005
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, $B_{10}$ life and its lower bound with $90\%$ confidence at worst case use condition are estimated by analyzing the accelerated life test data.