• Title/Summary/Keyword: Failure factor

Search Result 2,019, Processing Time 0.026 seconds

A case study of slope failure for large cut-slope (대절토사면내 붕괴발생에 따른 안정성검토 사례연구)

  • Lee, Yeon-Hee;Shin, Chang-Gun;Kim, Yong-Soo;Han, Jae-Hee;Choi, Jun-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.697-702
    • /
    • 2006
  • A counterplan of slope failure has to investigate about various and engineering safety factors. Especially, it is important that large cut-slope must examine rational and economic solution. In this case study, cut-slope failure caused by inflow of rainwater into alternate layers. Hereafter it is suggested that large cut-slope should consider analysis the cause for a decline of safety factor and the engineering character of corestone ground mass.

  • PDF

A Methodolody of Considering the Failure of Supports in Evaluating Tunnel Safety Factors (터널의 안전율 평가 시 지보재 파괴 고려 방안 연구)

  • You Kwang-Ho;Hong Keun-Young;Park Yeon-Jun;Lee Hyun-Koo;Kim Jea-Kwon
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-224
    • /
    • 2005
  • The safety factor of a tunnel considering the failure of supports is important because the failure of supports might cause the collapse of the tunnel. In the previous studies, shotcrete was modelled as beam elements and the failure of the shotcrete was checked according to the allowable working stress concept. In this study, shotcrete was modelled by both beam elements and continuum (elasto-plastic) elements. Safety factors of tunnels were estimated by two dimensional numerical analysis with varying rock mass class, coefficient of lateral pressure, thickness of shotcrete, rock bolt reinforcement and excavation method. Also the study suggested not only a proper amount of supports but also modelling method.

  • PDF

Effect of column loss location on structural response of a generic steel moment resisting frame

  • Rezvani, Farshad Hashemi;Jeffers, Ann E.;Asgarian, Behrouz;Ronagh, Hamid Reza
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.217-229
    • /
    • 2017
  • The effect of column loss location on the structural response of steel moment resisting frames (MRF) is investigated in this study. A series of nonlinear static and dynamic analyses were performed to determine the resistance of a generic frame to an arbitrary column loss and detect the structural members that are susceptible to failure progression beyond that point. Both force-controlled and deformation-controlled actions based on UFC 4-023-03 and ASCE/SEI 41-06 were implemented to define the acceptance criteria for nine APM cases defined in this study. Results revealed that the structural resistance against an arbitrary column loss in the top story is at least 80% smaller than that of the bottom story. In addition, it was found that the dynamic increase factor (DIF) at the failure point is at most 1.13.

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

A Prediction of the Plane Failure Stability Using Artificial Neural Networks (인공신경망을 이용한 평면파괴 안정성 예측)

  • Kim, Bang-Sik;Lee, Sung-Gi;Seo, Jae-Young;Kim, Kwang-Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.513-520
    • /
    • 2002
  • The stability analysis of rock slope can be predicted using a suitable field data but it cannot be predicted unless suitable field data was taken. In this study, artificial neural networks theory is applied to predict plane failure that has a few data. It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basis of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully In this study, error back-propagation algorithm that is one of the teaching techniques of artificial neural networks is applied to predict plane failure. In order to verify the applicability of this model, a total of 30 field data results are used. These data are used for training the artificial neural network model and compared between the predicted and the measured. The simulation results show the potentiality of utilizing the neural networks for effective safety factor prediction of plane failure. In conclusion, the well-trained artificial neural network model could be applied to predict the plane failure stability of rock slope.

  • PDF

Simulation of electromigration behavior on ULSI′s interconnect under pulsed DC stress : frequency, duty factor, temperature effect (Pulsed DC 조건에서 반도체 배선의 electromigration 시뮬레이션 : 주파수, duty factor, 온도효과)

  • 이동현;안진호;박영준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.40-42
    • /
    • 2002
  • Electromigration is atomic diffusion driven by a momentum transfer from conducting electrons. With every new generation of intergrated circuits, interconnect line widths have been reduced and current densities in the interconnect have become higher. This leads to an increase in the threat to interconnect reliability due to electromigration. In this paper, we simulated stress evolution with changing temperature, duty factor(ratio of on time and pulse time), frequency under pulsed DC condition. As a result, we predict MTF(median time to failure) and found that exponent n is affected by changing temperature, duty factor.

  • PDF

The relationship between human factor and error for behavior of manufacturing industry employee (제조업근로자의 행동에 대한 인적요인 및 오류관계 연구)

  • Yoon, Yong-Gu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.107-119
    • /
    • 2007
  • The purpose of this article is to examine the relationship between unsafe behavior, human factor and human error. For the object, several correlation analyses for those three elements were implemented. Several hypotheses for the relationship between them was suggested. The suggested hypotheses were verified by a comprehensive survey received from 132 safety manager of manufacturing industry. The conclusions were proven from the hypotheses verificaiton as belows; 1) The dependent relation items between unsafe behavior and human factor are dress protection tool, machine(equipment) and working rule have a dependent relation. 2) The dependent relation items between human factor and human error are uncommunication, control, slaps, fatigue, education, system, unmonitoring, failure. 3) The dependent relation items between human error and unsfafe behavior are decline and product/working method,failure and uncommunication have a dependent relation.

  • PDF

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

Development of Accelerated Life Test Method for Constant Electrical Potential Electrolysis Gas Sensor (정전위 전해식 가스센서의 가속수명시험법 개발)

  • Yang, Il Young;Kang, Jun Gu;Yu, Sang Woo;Oh, Geun Tae;Na, Yoon Gyoon
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.180-191
    • /
    • 2016
  • Purpose: The purpose of this study was to develop the accelerated life test method for Constant Electrical Potential Electrolysis gas sensor (CEPE gas sensor). Methods: The parts and modules of CEPE gas sensor were analyzed by using Reliability Block Diagram (RBD). Failure Mode and Effect Analysis (FMEA) and Quality Function Deployment (QFD) methods were performed for each part to determine the most affecting stress factor in its life cycle. The long term testing was conducted at three different dry heat levels and the acceleration factor was developed by using Arrhenius relationship. Conclusion: The acceleration factor for CEPE gas sensor was developed by using FMEA, QFD, and statistical analysis for its failure data. Also qualification tests were designed to meet the target life.

Bayesian Multiple Comparisons for the Ratio of the Failure Rates in Two Components System

  • Cho, Jang-Sik;Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.647-655
    • /
    • 2006
  • In this paper, we consider multiple comparisons for the ratio of the failure rates in two components system that the lifetimes of the components have independent exponential distributions. Also we suggest Bayesian multiple comparisons procedure based on fractional Bayes factor when noninformative priors are applied for the parameters. Finally, we give numerical examples to illustrate our procedure.

  • PDF