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Abstract

In this paper, we consider multiple comparisons for the ratio of the 
failure rates in two components system that the lifetimes of the 
components have independent exponential distributions. Also we suggest 
Bayesian multiple comparisons procedure based on fractional Bayes factor 
when noninformative priors are applied for the parameters. Finally, we 
give  numerical examples to illustrate our procedure.  
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1. Introduction

The exponential model has been widely used as a model in areas ranging from 

studies on the lifetime. So we consider two components system that the lifetimes 

of two components have independent exponential distribution. In this paper, we 

focus on testing for the ratio of failure rates in two components system. For 

testing equality of the ratios, classical tests such as approximate test are widely 

used. But the test of equality of the ratios more than three systems relies on 

likelihood ratio test statistic. And classical tests only decide whether the null 

hypothesis, commonly the equality of the ratios, will be rejected or not. But 

Bayesian approach to resolve the multiple comparisons problem selects the best 

model with the highest posterior probability.  
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In this paper, we focus on Bayesian multiple comparisons for the ratios of the 

failure rates of K systems based on Bayes factor. In many cases, noninformative 

priors are required because of limited information and time constrains. But, since 

noninformative priors are typically improper, the priors are only up to arbitrary 

constants which affect the values of Bayes factors.

Berger and Pericchi(1996) introduced the intrinsic Bayes factor(IBF) using a data 

splitting idea, which would eliminate the arbitrariness of improper priors. Kim and 

Ko(2005) considered testing the equality of two inverse Gaussian populations based 

on IBF. On the other side, O'Hagan(1995) proposed the fractional Bayes 

factor(FBF) to remove the arbitrariness by using a portion of the likelihood. Kim, 

Kang and Lee(2006) considered the Bayesian multiple comparison procedure of 

binomial populations.

In this paper, we consider multiple comparisons for the ratio of the failure rates 

in K two components systems that the lifetimes of the components in each 

system have independent exponential models. And we suggest the Bayesian 

multiple comparisons procedure based on FBF when noninformative priors are 

applied for the failure rates. Finally, we give some numerical examples to illustrate 

our procedure.

2. Preliminaries

Let M 1,…,M N
 be models under consideration. And let X  and Y  be random 

variables with joint probability density function f i( x,y∣θ i), under model M i
, 

i=1,…,N. The parameter vectors θ i  are unknown. Let π i(θ i)  be the prior 

distribution of model M i
, and let p i  be the prior probabilities of model M i

. Then 

the posterior probability that the model M i
 is true is given as

P(M i∣ x, y)=( ∑
N

j=1

p j
p i
B ji)

-1

,                       

where B ij
 is the Bayes factor of model M j

 to model M i
 defined by 

B ji=
m j( x, y)

m i( x, y)
=

⌠
⌡Θ j

f j( x, y∣θ j)π j(θ j)dθ j

⌠
⌡Θ i

f i( x, y∣θ i)π i(θ i)dθ i

,                (1)

where x=(x i1,…,x in i1)  and y=(y i1,…,y in i2)  under model M i
, i=1,…,N. The 

B ji
 interpreted as the comparative support of the data for the model j to i. The 
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computation of B ji
 needs specification of the prior distribution π i(θ i)  and π j(θ j). 

Usually, one can use the noninformative prior, often improper, for parameters. Let 

π Ni  be the noninformative prior for model M i
. The use of improper priors π Ni (⋅)  

in (1) causes the B ji
 to contain arbitrary constants.

To solve this problem, O'Hagan(1995) proposed the FBF for Bayesian testing 

and model selection problem as follow. If we use a noninformative prior π Ni (θ i)  

under M i
, then equation (1) becomes

B Nji=
m N
j ( x, y)

m N
i ( x, y)

=

⌠
⌡Θ j

f j( x, y∣θ j)π
N
j (θ j)dθ j

⌠
⌡Θ i

f i( x, y∣θ i)π
N
i (θ i)dθ i

.                 (2)

Then the FBF of model M j
 versus model M i

 is 

B Fji=
q j(b, x, y)

q i(b, x, y)
,                             (3)

where q i(b, x, y)=

⌠
⌡Θ i

f i( x, y∣θ i)π
N
i (θ i)dθ i

⌠
⌡Θ i

f bi( x, y∣θ i)π
N
i (θ i)dθ i

 and b specify a fraction of the 

likelihood which is to be used as a prior density. 

Let's consider K two components systems that the distributions of the lifetimes 

have parameters Θ=(θ 1,…,θ K).  

The multiple comparisons of K ratios of the failure rates are to make inferences 

concerning relationships among the θ i's.

Let Ω={ (θ 1,θ 2,…,θ K) : θ i∈R, i=1,2,…,K}  be the K-dimensional parameter 

space. Equality and inequality relationships among the θ i's induce statistical 

hypotheses that subsets of Θ, i.e., M 1: Ω 1={θ i:θ 1≠θ 2=…=θ K}  and so on up to 

M N: Ω N={θ i:θ 1≠θ 2≠…≠θ K}. The hypotheses M r:Ω r, r=1,2,…,N, are disjoint, 

and ∪ N
r=1Ω r=Ω.

Each hypothesis can be classified r(r=1,…,K)  distinct groups. Let θ *1,…,θ
*
r
 

denote the set of distinct θ i's, where r is the number of distinct elements in the 

vector Ω. We need to define the configuration notation. 

Definition 1 (Configuration). The configuration S={S 1,…,S K}  determines a 

classification of θ  into r distinct groups or clusters. Write K j
 for the set of 
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indices of parameters in group j, K j={ i:S i= j}. Let n K j
={n i∣i∈K j}   be the 

index set of observations and θ *j  be the common parameter value for K j
.

There is a one to one correspondence between hypotheses and configurations. 

Therefore the Bayes factor for multiple comparisons can be easily compute by this 

configuration notations. 

Now we will develop the Bayesian multiple comparisons procedure based on 

FBF. Suppose that a model classified r distinct groups. Let x i=(x i1,…,x in i1)  and 

y i=(y i1,…,y in i2)  be a n i1×1  and n i2×1  vectors of independent observations on 

θ i.  Then the likelihood function is given by

L(θ *1,…,θ
*
r∣ x, y)= ∏

r

t=1[ ∏{ i:i∈K t}
f i( x i, y i∣θ i)].                 (4)

Hence, the element of the FBF by O'Hagan (1995) is given as

q(b, x, y )=
  ⌠⌡

∞

-∞
…⌠⌡

∞

-∞
L(θ *1,…,θ

*
r∣ x, y )⋅π

N
r(θ *1,…,θ *r)dθ *1…dθ *r

  ⌠⌡
∞

-∞
…⌠⌡

∞

-∞
L b(θ *1,…,θ

*
r∣ x, y)⋅π

N
r(θ *1,…,θ *r)dθ *1…dθ *r

.    (5)

Thus if a model M i
 is classified r i  distinct groups and a model M j

 is 

classified r j  distinct groups then the FBF of M j
 versus M i

 is given by 

BFji=
q j(b, x, y)

q i(b, x, y)
,

where q i(b, x, y)=
  ⌠⌡

∞

-∞
…⌠⌡

∞

-∞
L(θ

*
1,…,θ

*
r i∣ x, y)⋅π

N
r i(θ *1,…,θ*r i)dθ *1…dθ*r i

  ⌠⌡
∞

-∞
…⌠⌡

∞

-∞
L b
(θ
*
1,…,θ

*
r i∣ x, y)⋅π

N
r i(θ *1,…,θ*r i)dθ *1…dθ*r i

.

Hence the FBF for all comparisons can be computed by equation (2). Using 

these FBF, we can calculate the posterior probability for model M i, i=1,…,N. 

Thus, we can select the hypothesis with highest posterior probability in Bayesian 

multiple comparisons based on FBF. 
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3. Bayesian Multiple Comparisons for the Ratio of the Failure 

Rates

Let X i=(Xi1,…,X ini1)  and Y i=(Yi1,…,Y ini2)  be random sample from ith two 

components system that the lifetimes of the components have independent 

exponential models with the failure rates λ i  and η i, respectively. Then the 

likelihood function for  parameter vector Θ=(θ 1,…,θ K)  given x i=(x i1,…,x in i1)  

and y i=(y i1,…,y in i2)  is given by

     L(Θ∣ x, y)= ∏
K

i=1
f i( x i, y i∣θ i)

               = ∏
K

i=1[λ
∑
K

i=1
n i1

i ⋅η
∑
K

i=1
n i2

i ⋅exp (-λ i ∑
K

i=1
∑
n i1

j=1
x ij-η i ∑

K

i=1
∑
n i2

j=1
y ij)].           (6)

In this paper, we focus on Bayesian multiple comparisons for the ratio ζ i=η i/λ i  

of the ith populations. Cho and Baek(2002) obtained the reference prior as 

noninformative prior for the ratio ζ=η/λ  as follows.

πN(θ)=
1
λζ
, λ, ζ> 0,                              (7)

where θ=(λ,ζ).

Suppose that a model M i
 is classified r distinct groups and that we use the 

noninformative prior for (θ *1,…,θ
*
r)  as follows.

 

π Nr(θ
*
1,…,θ

*
r)=

1

λ*1ζ
*
1…λ

*
rζ
*
r

, 0<λ *i, ζ
*
i <∞,                      (8)

where θ *i=(λ
*
i ,ζ

*
i ), i=1,…,r. The likelihood function is

     L(θ *1,…,θ
*
r∣ x, y).     

       = ∏
r

t=1
(λ *t)

∑
i∈K t

(n i1+ ni2)

(ζ *t )
∑
i∈K t

n i2

⋅exp (-λ*t ∑i∈Kt∑
n i1

j=1
x ij-λ

*
t ζ
*
t ∑
i∈Kt
∑
n i2

j=1
y ij).         (9)

Then the element of the FBF is computed as follows;
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    ⌠
⌡

∞

0
…⌠⌡

∞

0
L(θ *1,…,θ

*
r∣ x, y)π

N
r(θ

*
1,…,θ

*
r)dθ

*
1…dθ

*
r
      

= ∏
r

t=1
Γ( ∑

i∈Kt
n i1)⋅Γ( ∑

i∈Kt
n i2)⋅( ∑i∈Kt∑

ni1

j=1
x ij)

- ∑
i∈Kt
n i1

⋅( ∑i∈Kt∑
ni2

j=1
y ij)

- ∑
i∈Kt
n i2

and

  ⌠
⌡

∞

0
…⌠⌡

∞

0
L b(θ *1,…,θ

*
r∣ x, y)π

N
r(θ

*
1,…,θ

*
r)dθ

*
1…dθ

*
r
                 

= ∏
r

t=1
Γ(b 1 ∑

i∈Kt
n i1)⋅Γ(b 2 ∑

i∈Kt
n i2)⋅(b 1 ∑i∈Kt∑

ni1

j=1
x ij)

- b 1 ∑
i∈Kt
n i1

⋅(b 2 ∑i∈Kt∑
ni2

j=1
y ij)

- b 2 ∑
i∈Kt
n i2

.

Hence, q(b,x, y)  is given by

q(b, x, y )= ∏
r

t=1

Γ( ∑
i∈Kt
n i1)⋅Γ( ∑

i∈Kt
n i2)⋅( ∑i∈Kt∑

n i1

j=1
x ij)

- ∑
i∈Kt
n i1

⋅( ∑i∈Kt∑
n i2

j=1
y ij)

- ∑
i∈Kt
n i2

Γ(b 1 ∑
i∈Kt
n i1)⋅Γ(b 2 ∑

i∈Kt
n i2)⋅(b 1 ∑i∈Kt∑

n i1

j=1
x ij)

- b 1 ∑
i∈Kt
n i1

⋅(b 2 ∑i∈Kt∑
n i2

j=1
y ij)

- b 2 ∑
i∈Kt
n i2

.                                                                         (10)

Then the FBF of M j
 versus M i

 is given by 

B Fji( x )= ∏
r j

{Mj:t=1}

Γ( ∑
j∈Kt
n j1)⋅Γ( ∑

j∈Kt
n j2)⋅( ∑j∈Kt∑

n j1

l=1
x jl)

- ∑
j∈Kt
n j1

⋅( ∑j∈Kt∑
n j2

l=1
y jl)

- ∑
j∈Kt
n j2

Γ(b 1 ∑
j∈Kt
n j1)⋅Γ(b 2 ∑

j∈Kt
n j2)⋅(b 1 ∑j∈Kt∑

n j1

l=1
x jl)

- b 1 ∑
j∈Kt
n j1

⋅(b 2 ∑j∈Kt∑
n j2

l=1
y jl)

- b 2 ∑
j∈Kt
n j2

     

× ∏
r i

{Mi:t=1}

Γ(b 1 ∑
i∈Kt
n i1)⋅Γ(b 2 ∑

i∈Kt
n i2)⋅(b 1 ∑i∈Kt∑

n i1

l=1
x jl)

- b 1 ∑
i∈Kt
n i1

⋅(b 2 ∑i∈Kt∑
n i2

l=1
y il)

- b 2 ∑
i∈Kt
n i2

Γ( ∑
i∈Kt
n i1)⋅Γ( ∑

i∈Kt
n i2)⋅( ∑i∈Kt∑

n i1

l=1
x il)

- ∑
j∈K t
n i1

⋅( ∑i∈Kt∑
n i2

l=1
y il)

- ∑
i∈Kt
n i2

.

(11)
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4. Numerical Examples

In this section, we use numerical data to illustrate the Bayesian multiple 

comparisons procedure based on FBF for the ratios of the failure rates in two 

components system that the lifetimes of the components are independent 

exponential distributions. Here, we consider K=4 two components systems and 

sample size of n i1=ni2=20,  i=1,…,4. So the numbers of possible hypotheses 

are 15. Table 1 denotes the observations for 4 two components systems. 

<Table 1> Observations for each system

system components observations

1

X
.5631, .3664,  1.5945, .5757, 1.6993, .2503, 1.1338, 1.0221, .1062, .2402, 1.5693, 

.3287, .3828, .8950,  .2513, 1.2370, .9889, .1265, .8551, .3839

Y
.9588, .4806, .0302, 1.6232,  .4264, .5107, .1201, .6587, .0457, 1.6441, 1.2235, 

1.6592, 1.2744, .1251, .8506, .9119, .0843,  .5889, 1.8410, 1.4418

2

X
1.9597, .0631, 1.3502, .1755, .3364, .4560, .3058, 1.9204, .0671, .3195, .4763, .1840, 

.9519, .1060, .1265, .6916, .7622, .2727, .1900, .4437

Y
1.3774, .0028, .4075, .7519, .4017, 2.4950, .9412, .0453, 2.2321, .1901, .8292, .4083, 

.2285, 1.7112, .4496, 1.2518, .4324, .6550, .7987, 3.6654

3

X
1.0013.1025, .8579, .4016, 1.0294, .1709, .0537, .5077, .5693, 2.0985, .1287, .1371, 

1.2791, .2629, .0825, 1.6988, .7313, 2.1151, .3065, .0877, 

Y
.8342, .1458, .1468, .0145, .1285, .1606, .7284, .7408, .0928, .3788, .5478, .2561, 

.0075, .5336, .3238, .2451, .4256, .2567, .0068, .0874, 

4

X
.8718, .2705, .0405, .3782, .0188, .5570, .0245, .0720, .6205, .3022, .1505, .3898, 

.0051, .2128, .8795, .5008, .4344, .4312, .2421, .2547

Y
.0124, .0827, .5150, .2314, .1597, .2098, .2821, .1780, .0924, .1607, .0982, .1269, 

.3604, .0056, .4643, .1229, .0996, .2376, .0941, .2445

From table 1, we obtained the maximum likelihood estimators of the ratios for 4 

systems are ζ 1̂=0.8831, ζ 2̂=0.5789, ζ 2̂=2.2474  and ζ 4̂=1.7619, respectively. So 

we note that the true hypothesis may be H : ζ 1=ζ 2≠ζ 3≠ζ 4  or 

H : ζ 1=ζ 2≠ζ 3=ζ 4. Table 2 gives the calculated posterior probabilities for all 

possible hypotheses based on FBF.
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<Table 2> Calculated posterior probabilities based on FBF

Hypothesis Posterior probabilities

ζ 1=ζ 2=ζ 3=ζ 4 0.0000

ζ 1=ζ 2=ζ 3≠ζ 4 0.0198

ζ 1=ζ 2=ζ 4≠ζ 3 0.0000

ζ 1=ζ 2≠ζ 3=ζ 4 0.4002 

ζ 1=ζ 2≠ζ 3≠ζ 4 0.4948

ζ 1=ζ 3=ζ 4≠ζ 2 0.0198

ζ 1=ζ 3≠ζ 2=ζ 4 0.0000

ζ 1=ζ 3≠ζ 2≠ζ 4 0.0078

ζ 1=ζ 4≠ζ 2=ζ 3 0.0000

ζ 1=ζ 4≠ζ 2≠ζ 3 0.0000

ζ 1≠ζ 2=ζ 3=ζ 4 0.0000

ζ 1=ζ 2≠ζ 3=ζ 4 0.0015

ζ 1≠ζ 2=ζ 4≠ζ 3 0.0000

ζ 1≠ζ 2≠ζ 3=ζ 4 0.0250

ζ 1≠ζ 2≠ζ 3≠ζ 4 0.0309

From tabel 2, it is evident that the hypothesis for ζ 1=ζ 2≠ζ 3≠ζ 4  has the most 

large posterior probabilities 0.4948. And the hypothesis for ζ 1=ζ 2≠ζ 3=ζ 4  has 

second large posterior probability 0.4002. This suggests that the data lend greatest 

support to equalities for ζ 1=ζ 2  or ζ 1=ζ 2  and ζ 3=ζ 4  being different from the 

others. 

Up to this point, we have considered the problem of developing Bayesian 

multiple comparisons of the failure rates for K two components systems. 

Extension of the above approach to the Bayesian multiple comparison problems for 

the another population is straightforward. The research topics pertaining to the 

extension of the method and the examination of its performance are worthy to 

study and are left as a future subject of research.
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