• Title/Summary/Keyword: Failure cause

Search Result 2,137, Processing Time 0.03 seconds

Constructing a Competing Risks Model for the Combined Structure with Dependent Relations (종속적 관계를 갖는 혼합구조에 대한 경쟁적 위험모형의 구축)

  • Park, Seonghwan;Park, Jihyun;Bae, Kiho;Ahn, Suneung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.92-98
    • /
    • 2017
  • The rapid growth of engineering technology and the emergence of systemized and large-scale engineering systems have resulted in complexity and uncertainty throughout the lifecycle activities of engineering systems. This complex and large-scale engineering system consists of numerous components, but system failure can be caused by failure of any one of a number of components. There is a real difficulty in managing such a complex and large-scale system as a part. In order to efficiently manage the system and have high reliability, it is necessary to structure a system with a complex structure as a sub-system. Also, in the case of a system in which cause of failures exist at the same time, it is required to identify the correlation of the components lifetime and utilize it for the design policy or maintenance activities of the system. Competitive risk theory has been used as a theory based on this concept. In this study, we apply the competitive risk theory to the models with combined structure of series and parallel which is the basic structure of most complex engineering systems. We construct a competing risks model and propose a mathematical model of net lifetime and crude lifetime for each cause of failure, assuming that the components consisting a parallel system are mutually dependent. In addition, based on the constructed model, the correlation of cause of failure is mathematically analyzed and the hazard function is derived by dividing into net lifetime and crude lifetime.

Failure Analysis of Filaments of Quadrupole Mass Spectrometer for Plasma Process Monitoring

  • Ha, Sung Yong;Kim, Dong Hoon;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.142-150
    • /
    • 2015
  • A failure analysis of tungsten filaments used in quadrupole mass spectrometer for plasma process monitoring was carried by using SEM and EDS. Failed at high temperature, filaments showed two kinds of failure modes. The one is that diameter of filament became thinner gradually and finally snapped. The other is that filament abruptly snapped almost at a right angle. The EDS analysis showed Fe and C, including W and Fe, on the surface of failed filament. when failed filaments were treated with plasma in mixture of Ar and $CF_4$, the amount of Fe and C decreased. The failure analysis of filament showed that the cause of filament failure is thermal evaporation and grain growth of tungsten at high temperature.

Pseudo-renal Failure Caused by Urinary Bladder Rupture in Multiple Trauma Patient

  • Jang, Jihoon;Lim, Kyoung Hoon
    • Journal of Trauma and Injury
    • /
    • v.29 no.4
    • /
    • pp.191-194
    • /
    • 2016
  • Pseudo-renal failure presents with renal failure characteristics, such as hypercreatininemia and hyperkalemia without a change in glomerular filtration rate or structure of the kidney. Pseudo-renal failure due to trauma is difficult to diagnose, because symptoms are non-specific and other factors may cause hypercreatininemia and hyperkalemia. In a trauma patient, especially one with pelvic injury, the abrupt elevation of potassium, blood urea nitrogen, and creatinine levels without previous medical history is a key feature in the diagnosis of urinary ascites. We report a case of pseudo-renal failure caused by intraperitoneal bladder rupture in a multiple trauma patient.

Reliability Prediction of Hybrid Rocket Ignition System (하이브리드 로켓 점화 장치의 신뢰도 예측)

  • Moon, Keun-Hwan;Moon, Hee-Jang;Choi, Joo-Ho;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.26-34
    • /
    • 2016
  • In this study, reliability prediction of the ignition system of hybrid rocket is performed. The FMECA is preceded to the reliability prediction. To this end, the ignition system is divided into 5 components and 19 potential failure modes. The failure cause and effects are identified and criticality analysis is carried out for each failure mode, in which the criticality number is estimated using the failure rate databases. Among the numbers, the failure modes and components with higher criticality and severity are chosen and allocated with higher weighting factor. The reliability predictions are performed using the failure rate databases, from which the current ignition system is found to satisfy the target reliability.

A Study on Contributing Factors to Aircraft Maintenance Failure (항공정비결함에 기여하는 인적요인에 관한 연구)

  • Kim, Chun-Yong;Park, Heui-Kwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.81-88
    • /
    • 2017
  • Aircraft maintenance failure doesn't only threaten flight safety but also causes significant economic losses such as flight delays, flight cancellations, air turn backs and diversion and so on. Therefore, the efforts should be made to detect the contributing factors that cause such maintenance failure and eliminate them. In this study, by analyzing factors contributing to system failure using the Maintenance Error Decision Aid (MEDA) model based on stochastic relations between the contribution factors, system failure and events, we will draw a improvement plan to aircraft maintenance defects.

$217Plus^{TM}$ 시스템 모형의 민감도

  • Jeon, Tae-Bo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.257-264
    • /
    • 2011
  • In this study, we performed sensitivity study of the $217Plus^{TM}$ system model to various parameters. Specific attention was put to logistics model and its behavior has been examined in terms of non-component failure causes. We first briefly explained the $217Plus^{TM}$ methodology with system level failure rate evaluation. We then applied experimental designs with several failure causes as factors. We used an orthogonal array with three levels of each parameter. Our results indicate that cannot duplicate, induced, and wear-out causes have dominant effects on the system failures and design, parts, and system management have much less but a little strong effects. The results in this study not only figure out the behavior of the predicted failure rate as functions of failure causes but provide meaningful guidelines for practical applications.

  • PDF

Design of Accelerated Test for Reliability Assurance of SHAFT Assembly (SHAFT 어셈블리 신뢰성 보증을 위한 가속시험의 설계)

  • 김준홍;오근태;김명수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.75-87
    • /
    • 2000
  • This paper proposes a procedure for designing an accelerated test using SMAT(Stress, (failure) Mechanism and Test) model describing the relation among stress, failure mode/mechanism and test method. In SMAT model the stresses to be applied are derived from the environmental factor analysis, the relative importance of those stresses can be estimated using AHP(Analytic Hierarchy Process) and failure mode/mechanism and test method are derived from the fields failure information and FMEA(Failure Mode and Effect Analysis). By applying the procedure we can make a selection of major factors to cause the failure of assembly and design the accelerated test using DOE(Design of Experiments) The procedure is illustrated with an qualification test case study of washing machine shaft assembly in "A" electric appliance company.

  • PDF

Enhancing Network Service Survivability in Large-Scale Failure Scenarios

  • Izaddoost, Alireza;Heydari, Shahram Shah
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.534-547
    • /
    • 2014
  • Large-scale failures resulting from natural disasters or intentional attacks are now causing serious concerns for communication network infrastructure, as the impact of large-scale network connection disruptions may cause significant costs for service providers and subscribers. In this paper, we propose a new framework for the analysis and prevention of network service disruptions in large-scale failure scenarios. We build dynamic deterministic and probabilistic models to capture the impact of regional failures as they evolve with time. A probabilistic failure model is proposed based on wave energy behaviour. Then, we develop a novel approach for preventive protection of the network in such probabilistic large-scale failure scenarios. We show that our method significantly improves uninterrupted delivery of data in the network and reduces service disruption times in large-scale regional failure scenarios.

Study for the Reliability Evaluation of a Volute Pump (벌류트 펌프의 신뢰성 평가에 관한 연구)

  • Jung, Dong Soo;Lee, Yong Bum;Kang, Bo Sik
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2018
  • The objective of this paper is to evaluate the reliability of a volute pump and presents test results through performance and life tests. The performance and life test methods were presented by analyzing the failure modes of the volute pump. Zero failure test time was calculated to evaluate the reliability of the volute pump and then, the test was performed under accelerated conditions. The test was also carried out to check the failure modes of the field conditions. This study can be provided to improve the product reliability through failure analysis of the volute pump. And failure cause of typical failure case has been investigated and improvement design has been presented. The performance test results of before and after the accelerated life test were presented to confirm the improved reliability of the volute pump.

Preventing cascading failure of electric power protection systems in nuclear power plant

  • Moustafa, Moustafa Abdelrahman Mohamed Mohamed;Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.121-130
    • /
    • 2021
  • Cascading failure is the main cause of large blackouts in electrical power systems; this paper analyzes a cascading failure in Hanbit nuclear power plant unit two (2) caused by a circuit breaker (CB) operation failure. This malfunction has been expanded to the loss of offsite power (LOOP). In this study, current practices are reviewed and then the methodologies of how to prevent cascading failures in protection power systems are introduced. An overview on the implementation of IEC61850 GOOSE messaging-based zone selective interlocking (ZSI) scheme as key solution is proposed. In consideration of ZSI blocking time, all influencing factors such as circuit breaker opening time, relay I/O response time and messages travelling time in the communication network should be taken into account. The purpose of this paper is to elaborate on the effect of cascading failure in NPP electrical power protection system and propose preventive actions for this failures. Finally, the expected advantages and challenges are elaborated.