Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.5.142

Failure Analysis of Filaments of Quadrupole Mass Spectrometer for Plasma Process Monitoring  

Ha, Sung Yong (Plasma Materials Research Center)
Kim, Dong Hoon (Department of Plasma Convergence Engineering, Graduate School)
Joo, Junghoon (Plasma Materials Research Center)
Publication Information
Applied Science and Convergence Technology / v.24, no.5, 2015 , pp. 142-150 More about this Journal
Abstract
A failure analysis of tungsten filaments used in quadrupole mass spectrometer for plasma process monitoring was carried by using SEM and EDS. Failed at high temperature, filaments showed two kinds of failure modes. The one is that diameter of filament became thinner gradually and finally snapped. The other is that filament abruptly snapped almost at a right angle. The EDS analysis showed Fe and C, including W and Fe, on the surface of failed filament. when failed filaments were treated with plasma in mixture of Ar and $CF_4$, the amount of Fe and C decreased. The failure analysis of filament showed that the cause of filament failure is thermal evaporation and grain growth of tungsten at high temperature.
Keywords
QMS; Tungsten filament; Failure; Thermal evaporation; Grain growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. D KLOPP AND P. L. RAFFO, NASA TN D-2503 (1964).
2 W. D KLOPP AND P. L. RAFFO, NASA TN D-3483 (1966).
3 Dr. tech. sci. Prof. E. M. Savitskii, Metal Science and Heat Treatment of Metals, 2, 483-486 (1960).   DOI
4 A. Gilbert, Journal of the Less-Common Meatls, 10, 328-343 (1966).   DOI   ScienceOn
5 Stefan Wurster, Bernd Gludovartz, Reinhard Pippan, Int. Journal of Refractory Metals and Materials, 28, 692-697 (2010).   DOI   ScienceOn
6 D. Richard, Photon International 11, 190 (2009).
7 U. Kroll, A. Shah, H. Keppner, J. Meier, P. Torres, D. Fisher, Sol. Energy Mater. Sol.Cells 48, 343 (1997).   DOI   ScienceOn
8 Y. Sobajima, M. Nishino, T. Fukumori, M. Kurihara, T. Higuchi, S. Nakano, T. Toyama, H. Okamoto, Sol. Energy Mater. Sol. Cells 93, 980 (2009).   DOI   ScienceOn
9 T. Matsui, A. Matsuda, M. Kondo, Sol. Energy Mater. Sol. Cells 90, 3199 (2006).   DOI   ScienceOn
10 L. Li, Y.M. Li, J.A. Anna Selvan, A.E. Delahoy, R.A. Levy, J. Non-Cryst. Solids 347, 106 (2004).   DOI   ScienceOn
11 B. Rech, T. Roschek, T. Repmann, J. Muller, R. Schmitz, W. Appenzeller, Thin Solid Films 427, 157 (2003).   DOI   ScienceOn
12 A. N. Christensen J. Cryst. Growth 129, 266 (1993).   DOI   ScienceOn
13 K. Luey, Metallurgical Transaction, 22A, 2077 (1991).
14 Jonathan H. Batey, Vacuum, 101, 410-145 (2014).   DOI   ScienceOn
15 Mathew Peet, 4th YEAR M. ENG, University of Sheffield (2008).
16 Frohnerg and Adam, Thin Solid Films 25, 525-530 (1975).   DOI   ScienceOn
17 P. Adam, H. Wever, Surface Science, 21, 307-323 (1970).   DOI   ScienceOn
18 J. Lepage, A. Mezin, M. Nivoit, 161, 255-277 (1984).
19 E.O. Hall Proc. Phys. Soc., 643, 747 (1951).
20 N. J., J. Iron Steel Inst. 173, 25 (1953).
21 Inficon CPM training material, Inficon 2011.
22 Air Liquide Korea, Materials Safety Data Sheet.