• Title/Summary/Keyword: Failure Study

Search Result 11,779, Processing Time 0.043 seconds

Analysis of Discontinuity Distribution Property to Predict Rock Slope Failure (암반 사면의 파괴 예측을 위한 불연속면 분포 특성 분석)

  • 윤운상;김정환;배기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.147-152
    • /
    • 1999
  • Distribution of fracture system is an important factor to analyse instability of jointed rock slope. In the most case of rock slopes, joint distribution properties are related to potential, shape, size and locality of slope failure. The purpose of this paper is to present an application of fracture characterization related to rock slope failure. Fracture data used in this study are collected by scanline survey. Two aspects of fracture characterization for rock slope are handled in this study First, In order to determine the potential and shape of slope failure, trace length of joints is considered as the weighting factor about collected orientation data. Second, Relationship between trace length and spacing is analysed to estimate failure location and size. The distribution of fracture system is directly influenced on wedge failure. It is effective to analyse the orientation of fractures by using weighting factors associated with the trace length of fractures rather than to analyse only that of fractures. It gives a conclusion that the wedge failure occurred along the peak of fracture density(or intensity) cycles.

  • PDF

The Stability Analysis of Submerged Excavated Slopes (수중 굴착사면의 안정해석)

  • Lee, M.W.;Lee, C.K.;Kim, H.J.;Ahn, K.K.;Heo, Y.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 1997
  • The main purpose of this study is to investigate the failure surface in a soil mass by a excavation of the model ground. The failure mechanism of an earth structure is usually determined from field failure observations or from laboratory model tests at failure. To study the failure surface for the excavated slope, laboratory model tests were performed by changing the angle of the excavated slope and the ground condition. Results of the laboratory model tests were compared with those obtained with theoretical solutions using limit equilibrium analysis method. The results of model tests show that, there is a failure to create a straight line in the low angle of excavated surface and a create a circle as the angle increases. As the angle of excavated surface is increasing, the angle of the failure surface increases too. In the angle of the failure surface, the submerged ground is less than the dry ground at $3.2^{\circ}$.

  • PDF

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

A Case Study on the Failure of Piston for Marine Diesel Engine (선박용 디젤기관의 피스톤 파손사고에 대한 연구)

  • Kim, Jong-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.222-223
    • /
    • 2005
  • The Any failure of piston of marine diesel engine must be regarded as serious, and any steps which can be taken to prevent such failure are desirable. The purposes of this study is to investigate and to analyse the failure causes of piston of marine diesel engine. If this paper has accomplished that end it can be counted as being of some slight value to the marine industry.

  • PDF

Experience of Patients Living with Chronic Renal Failure (만성신부전 환자의 체험)

  • 강성례;이병숙
    • Journal of Korean Academy of Nursing
    • /
    • v.31 no.4
    • /
    • pp.525-537
    • /
    • 2001
  • The Purpose of the study was to understand the experience of chronic renal failure patients for the qualified individual care for them. The purpose of this study was to explore the experience of patients living with chronic renal failure and to identify the meaning and structure of their experience. The subjects were four patients, two females and two males. The age range was from 21 to 54. Data was collected with a few in-depth interviews by the authors until the data was fully saturated. The framework and methodology of this study was based on Parse′s "Human Becoming methodology," an existential phenomenological research methodology. The findings of this study were as follows. Three experience structures of chronic renal failure patients were : 1. Sufferings and conflicts originated in the frustration caused by uncurable disease. 2. Dependence upon God and significant others with complex emotions. 3. Acceptance of sufferings, emerging hope for serving people, and gratitude for living. In conclusion the experience of chronic renal failure patients could be described from the findings (three structures) as "Experiencing the sufferings, conflicts originated in the frustration caused by uncurable disease, dependence upon God and significant others with complex emotion, acceptance of the suffering and hope for serving people, and gratitude for living." The three structures of the lived experience of patients with chronic renal failure, the findings of this study, could be explained by the three concepts of "Theory of Human Becoming," the first structure could be explained with values, the second with revealing-concealing, and the third with transforming.

  • PDF

Determination of active failure surface geometry for cohesionless backfills

  • Altunbas, Adlen;Soltanbeigi, Behzad;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.983-1001
    • /
    • 2017
  • The extent by which economy and safety concerns can be addressed in earth retaining structure design depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are calculated as functions of failure stress state and relative density of the backfill using a well-known empirical equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good agreement with the identified failure surfaces.

A Reliability Model of Process Systems with Multiple Dependent Failure States (다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델)

  • Choi, Soo Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.

On Optimal Replacement Policy for a Generalized Model (일반화된 모델에 대한 최적 교체정책에 관한 연구)

  • Ji Hwan Cha
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

Block Shear Failure : State of the Arts (블록전단파괴 : State of the Arts)

  • Jang, Sun-Jae;Lee, Woo-Chul;Lim, Nam-Hyoung;Lee, Chin-Ok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.75-78
    • /
    • 2008
  • Limit states of a tension member are the yielding of gross section, fracture of net section, and block shear failure. Block shear failure is very complicated than other limit state because of interaction of tension and shear failure. Block shear failure is studied continuously since the 1970s. However, failure model to estimate the strength of block shear failure provided in current design specifications is not reflective of the failure mode observed in the various experimental studies. Comparisons between the experimental results and design rules in various specifications about the block shear failure were conducted in this study. Also, the need for further studies of block shear failure were proposed.

  • PDF

A Risk Metric for Failure Cause in FMEA under Time-Dependent Failure Occurrence and Detection (FMEA에서 고장발생 및 탐지시간을 고려한 고장원인의 위험평가 척도)

  • Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.571-582
    • /
    • 2019
  • Purpose: To develop a risk metric for failure cause that can help determine the action priority of each failure cause in FMEA considering time sequence of cause- failure- detection. Methods: Assuming a quadratic loss function the unfulfilled mission period, a risk metric is obtained by deriving the failure time distribution. Results: The proposed risk metric has some reasonable properties for evaluating risk accompanied with a failure cause. Conclusion: The study may be applied to determining action priorities among all the failure causes in the FMEA sheet, requiring further studies for general situation of failure process.