• 제목/요약/키워드: Failure Probability

검색결과 1,262건 처리시간 0.024초

An efficient reliability analysis strategy for low failure probability problems

  • Cao, Runan;Sun, Zhili;Wang, Jian;Guo, Fanyi
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.209-218
    • /
    • 2021
  • For engineering, there are two major challenges in reliability analysis. First, to ensure the accuracy of simulation results, mechanical products are usually defined implicitly by complex numerical models that require time-consuming. Second, the mechanical products are fortunately designed with a large safety margin, which leads to a low failure probability. This paper proposes an efficient and high-precision adaptive active learning algorithm based on the Kriging surrogate model to deal with the problems with low failure probability and time-consuming numerical models. In order to solve the problem with multiple failure regions, the adaptive kernel-density estimation is introduced and improved. Meanwhile, a new criterion for selecting points based on the current Kriging model is proposed to improve the computational efficiency. The criterion for choosing the best sampling points considers not only the probability of misjudging the sign of the response value at a point by the Kriging model but also the distribution information at that point. In order to prevent the distance between the selected training points from too close, the correlation between training points is limited to avoid information redundancy and improve the computation efficiency of the algorithm. Finally, the efficiency and accuracy of the proposed method are verified compared with other algorithms through two academic examples and one engineering application.

Reliability analysis of soil slope reinforced by micro-pile considering spatial variability of soil strength parameters

  • Yuke Wang;Haiwei Shang;Yukuai Wan;Xiang Yu
    • Geomechanics and Engineering
    • /
    • 제36권6호
    • /
    • pp.631-640
    • /
    • 2024
  • In the traditional slope stability analysis, ignoring the spatial variability of slope soil will lead to inaccurate analysis. In this paper, the K-L series expansion method is adopted to simulate random field of soil strength parameters. Based on Random Limit Equilibrium Method (RLEM), the influence of variation coefficient and fluctuation range on reliability of soil slope supported by micro-pile is investigated. The results show that the fluctuation ranges and the variation coefficients significantly influence the failure probability of soil slope supported by micro-pile. With the increase of fluctuation range of soil strength parameters, the mean safety factor of the slope increases slightly. The failure probability of the soil slope increases with the increase of fluctuation range when the mean safety factor of the slope is greater than 1. The failure probability of the slope increases by nearly 8.5% when the fluctuation range is increased from δv=2 m to δv =8 m. With the increase of the variation coefficient of soil strength parameters, the mean safety factor of the slope decreases slightly, and the probability of failure of soil slope increases accordingly. The failure probability of the slope increases by nearly 31% when the variation coefficient increases from COVc=0.2, COVφ=0.05 to COVc=0.5, COVφ=0.2.

속도적응 핸드오프 알고리즘 분석 (Analysis of Velocity Adaptive Handoff Algorithm)

  • 김영일;진용옥
    • 한국통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.748-760
    • /
    • 1997
  • The handoff failure probability has to be enhanced efficiently to enhance the performance of PCS system. In this paper a new scheme called velocity adaptive handoff algorithm for reducing handoff failure probability and maintaining the carried traffic constantly in PCS systems, by assigning low handoff threshold value for high mobility calls, and assigning high handoff threshold value for low mobility calls, is presented. The performance of evaluation of this new scheme is carried out in terms of tranffic characteristics. Also velocity estimation algorithm for this new scheme is presented. According to the result, the handoff failure probability of velocity adaptive handoff algorithm is enhanced about 60%.

  • PDF

경사제 피복재의 유지관리를 위한 추계학적 확률모형 (Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters)

  • 이철응;김상욱
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1007-1015
    • /
    • 2013
  • 하중 발생과정에 따른 누적피해의 선형뿐만 아니라 비선형 거동을 해석할 수 있는 추계학적 확률모형이 수립되었다. 여러 종류의 피해강도함수를 도입하여 내용년수의 파괴확률과 비선형 누적피해의 거동이 자세히 해석되었다. 특히 본 연구에서는 저항한계를 임의의 분포함수를 갖는 확률변수로 취급하여 한계상태의 불확실성을 고려하였다. 또한 피복재에 대한 피해수준을 이용하여 처음으로 추계학적 확률모형을 경사제에 적용하였다. 실험 자료와의 비교를 통해 추정된 경사제 피복재에 대해 피해강도함수를 이용하여 내용년수에 따른 파괴확률과 비선형 누적피해의 거동을 해석하였다. 마지막으로 해석 결과를 이용하여 경사제 피복재의 보수 보강 시점과 최소한의 보수 보강규모를 정량적으로 산정할 수 있는 예방적 유지관리 방법을 제시하였다.

Time-dependent reliability analysis of coastal defences subjected to changing environments

  • Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.49-64
    • /
    • 2015
  • This paper presents a method for assessing the risk of wave run-up and overtopping of existing coastal defences and for analysing the probability of failure of the structures under future hydraulic conditions. The recent UK climate projections are employed in the investigations of the influence of changing environments on the long-term performance of sea defences. In order to reduce the risk of wave run-up and overtopping caused by rising sea level and to maintain the present-day allowances for wave run-up height and overtopping discharge, the future necessary increase in crest level of existing structures is investigated. Various critical failure mechanisms are considered for reliability analysis, i.e., erosion of crest by wave overtopping, failure of seaside revetment, and internal erosions within earth sea dykes. The time-dependent reliability of sea dykes is analysed to give probability of failure with time. The results for an example earth dyke section show that the necessary increase in crest level is approximately double of sea level rise to maintain the current allowances. The probability of failure for various failure modes of the earth dyke has a significant increase with time under future hydraulic conditions.

원자력 발전소 배관의 응력부식에 의한 파손확률 해석 (Analysis of Failure Probabilities of Pipes in Nuclear Power Plants due to Stress Corrosion Cracking)

  • 박재학;이재봉;최영환
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.6-12
    • /
    • 2011
  • The failure probabilities of pipes in nuclear power plants due to stress corrosion are obtained using the P-PIE program, which is developed for evaluating failure probability of pipes based on the existing PRAISE program. Leak, big leak and LOCA(loss of coolant accident) probabilities are calculated as a function of operating time for several pipes in a domestic nuclear plant. The sensitivity analysis is also performed to find out the important parameters for the failure of pipes due to stress corrosion. The results show that the steady state oxygen concentration and steady state temperature are important parameters and failure probability is very low when the oxygen concentration is maintained according to the regulation.

코히런트 시스템의 고장확률 (Failure Probability of Coherent System)

  • 고용해;이성철;전상표
    • 대한안전경영과학회지
    • /
    • 제1권1호
    • /
    • pp.79-90
    • /
    • 1999
  • In this paper, we suggested system reliability inequality used by failure rate distribution and developed new theorem-reliability function is increasing function. Also we calculated failure probability of coherent system used by variable transformation. Several examples are illustrated.

  • PDF

Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts

  • Guo, Quanquan;Wang, Shaoxu;Chen, Shenggang;Sun, Yunlong
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1051-1065
    • /
    • 2020
  • Safety analysis of nuclear power plant (NPP) especially in accident conditions is a basic and necessary issue for applications and commercialization of reactors. Many previous researches and development works have been conducted. However, most achievements focused on the safety reliability of primary pressure system vessels. Few literatures studied the structural safety of huge concrete structures surrounding primary pressure system, especially for the fourth generation NPP which allows existing of through cracks. In this paper, structural safety reliability of concrete structures of HTR-PM in accidental double-ended break of hot gas ducts was studied by Exceedance Probability Method. It was calculated by Monte Carlo approaches applying numerical simulations by Abaqus. Damage parameters were proposed and used to define the property of concrete, which can perfectly describe the crack state of concrete structures. Calculation results indicated that functional failure determined by deterministic safety analysis was decided by the crack resistance capability of containment buildings, whereas the bearing capacity of concrete structures possess a high safety margin. The failure probability of concrete structures during an accident of double-ended break of hot gas ducts will be 31.18%. Adding the consideration the contingency occurrence probability of the accident, probability of functional failure is sufficiently low.

경사제 피복재의 안정성 해석을 위한 동력학적 신뢰성 모형 (Dynamic Reliability Model for Stability Analysis of Armor Units on Rubble-Mound Breakwater)

  • 이철응
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.163-174
    • /
    • 2001
  • A dynamic reliability model for analyzing the stability of armor units on rubble-mound breakwater is mathematically developed by using Hudson's formula and definition of single-failure mode. The probability density functions of resistance and loading functions are defined properly, the related parameters to those probability density functions are also estimated straightforwardly by the first-order analysis. It is found that probabilities of failure for the stability of armor units on rubble-mound breakwater are continuously increased as the service periods are elapsed, because of the occurrence of repeated loading of random magnitude by which the resistance may be deteriorated. In particular, the factor of safety is incorporated into the dynamic reliability model in order to evaluate the probability of failure as a function of factor of safety. It may thus be possible to take some informations for optimal design as well as managements and repairs of armor units on rubble-mound breakwater from the dynamic reliability analyses.

  • PDF

Reliability analysis of three-dimensional rock slope

  • Yang, X.L.;Liu, Z.A.
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1183-1191
    • /
    • 2018
  • Reliability analysis is generally regarded as the most appropriate method when uncertainties are taken into account in slope designs. With the help of limit analysis, probability evaluation for three-dimensional rock slope stability was conducted based upon the Mote Carlo method. The nonlinear Hoek-Brown failure criterion was employed to reflect the practical strength characteristics of rock mass. A form of stability factor is used to perform reliability analysis for rock slopes. Results show that the variation of strength uncertainties has significant influence on probability of failure for rock slopes, as well as strength constants. It is found that the relationship between probability of failure and mean safety factor is independent of the magnitudes of input parameters but relative to the variability of variables. Due to the phenomenon, curves displaying this relationship can provide guidance for designers to obtain factor of safety according to required failure probability.