• Title/Summary/Keyword: Failure Probability

Search Result 1,263, Processing Time 0.025 seconds

Estimating the Probability of Perfect PM in the Brown-Proschan Imperfect PM Model (Brown-Proschan 불완전 PM 모형에서 완전 PM 확률의 추정)

  • 임태진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.151-165
    • /
    • 1997
  • We propose a method for estimating the probability of perfect PM from successive failure times of a repairable system. The system under study is maintained preventively at periodic times, and it undergoes minimal repair at failure. We consider Brown-Proschan imperfect PM model in which the system is restored to a condition as good as new with probability P and is otherwise restored to its condition just prior to failure. We discuss the identifiability problem when the PM modes are not recorded. The expectation-maximization principle is employed to handle the incomplete data problem. We assume that the lifetime distribution belongs to a parametric family with increasing failure rate. For the two parameter Weibull lifetime distribution, we propose a specific algorithm for finding the maximum lifelihood estimates of the reliability parameters : the probability of perfect PM (P), as well as the distribution parameters. The estimation method will provide useful results for maintaining real systems.

  • PDF

Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability (파손확률에 따른 마그네슘합금의 피로설계수명 예측)

  • Choi, Seon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The fatigue crack propagation is stochastic in nature, because the variables affecting the fatigue behavior are random and have uncertainty. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy AZ31 under various conditions such as thickness of specimen, the load ratio and the loading condition. The probability distribution fit to the fatigue failure life are investigated through a probability plot paper by these conditions. The probabilities of failure at various conditions are also estimated. The fatigue design life is predicted by using the Weibull distribution.

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

Competing Risks Regression Analysis (경쟁적 위험하에서의 회귀분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.130-142
    • /
    • 2018
  • Purpose: The purpose of this study is to introduce regression method in the presence of competing risks and to show how you can use the method with hypothetical data. Methods: Survival analysis has been widely used in biostatistics division. But the same method has not been utilized in reliability division. Especially competing risks, where more than a couple of causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not utilized in the area of reliability or they are analysed in the wrong way. Specifically Kaplan-Meier method is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced. In addition, sample competing risks data are analysed using cumulative incidence function along with some graphs. Lastly we compare cumulative incidence functions with regression type analysis briefly. Results: We used cumulative incidence function to calculate the survival probability or failure probability in the presence of competing risks. We also drew some useful graphs depicting the failure trend over the lifetime. Conclusion: This research shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime in the presence of competing risks. Cumulative incidence function is shown to be useful in stead. Some graphs using the cumulative incidence functions are also shown to be informative.

Fatigue reliability analysis of steel bridge welding member by fracture mechanics method

  • Park, Yeon-Soo;Han, Suk-Yeol;Suh, Byoung-Chul
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.347-359
    • /
    • 2005
  • This paper attempts to develop the analytical model of estimating the fatigue damage using a linear elastic fracture mechanics method. The stress history on a welding member, when a truck passed over a bridge, was defined as a block loading and the crack closure theory was used. These theories explain the influence of a load on a structure. This study undertook an analysis of the stress range frequency considering both dead load stress and crack opening stress. A probability method applied to stress range frequency distribution and the probability distribution parameters of it was obtained by Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability variants (stress range) output failure block loadings. The probability distribution of failure block loadings was acquired by Maximum likelihood Method and Determinant. This can calculate the fatigue reliability preventing the fatigue failure of a welding member. The failure block loading divided by the average daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for the welding member of the bottom flange of a cross beam and the vertical stiffener of a steel box bridge by the proposed model. Results showed that the primary factor effecting failure time was crack opening stress. It was important to decide the crack opening stress for using the proposed model. Also according to the 50% reliability and 90%, 99.9% failure times were indicated.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Seismic vulnerability of sliding isolation concrete rectangular liquid storage tanks

  • Cheng, Xuansheng;Yin, Siyuan;Chen, Wenjun;Jing, Wei
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • Based on the sliding isolation concrete LSS (liquid-storage structure), the specific seismic vulnerability is analyzed according to the general failure mode. In this study, 12 seismic inputs with different characteristics are used, and their acceleration peak values are modulated. By inputting these waves to the sliding isolation concrete storage structure, the finite-element models of different concrete rectangular LSSs are obtained and analyzed, and the failure probabilities are obtained according to the IDA (incremental dynamic analysis) curves of the structure. The results show that when the seismic acceleration peak value gradually increases from 0.1 g to 1.0 g, the failure probability of LSS gradually increases with the increase in friction coefficient. However, the failure probability of a sliding isolation LSS is less than 100% and far less than the failure probability of a non-isolated rectangular LSS, which shows that an isolated liquid storage structure continues working under a big earthquake. Thus, the sliding isolation for the concrete LSS has a significant damping effect.

Life Cycle Cost & Reliability Analysis of Quaywall Design Parameters (안벽 설계변수의 신뢰성 해석과 생애주기비용 분석)

  • Kim, Hong-Yeon;Yoon, Gil-Lim;Yoon, Yeo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.508-518
    • /
    • 2008
  • Reliability and sensitivity analysis of the design parameters for a section of caisson type quaywall which is the most applicable in Korea were performed. It was tried to estimate probabilities of failure for the system of the multiple failure modes and to analyze LCC in the quaywall structure. The reliability analysis was performed by FORM. Also, sensitivity indices were estimated using the reliability indices, which may be used inferring effects of each design parameter on the reliability indices. As a result, the coefficient of friction between caisson and rubble, the moment by self weight and the moment of resistance mostly affected on the reliability indices in the sliding, overturning and foundation failure, respectively. System reliability theorem was applied in order to estimate the probabilities of failure for the system of the multiple failure modes. As the results of estimation of the probabilities of failure for the system, all cases were more conservative than those for the elements, according to both failure mode and load combination applied to series system. It entirely exceeded the target reliability index, but it was consistent with the theorem. According to the optimum LCC with the width of the caisson, the probability of failure exceeded the target probability of failure at then time. Therefore, it was judged to be insufficient to the practical application.

  • PDF

Probability Analysis of Rock Slope Stability using Zoning and Discontinuity Persistence as Parameters (사면의 구역 및 절리의 연장성을 고려한 암반사면의 안정성 확률해석)

  • Jang, Bo-An;Sung, Suk-Kyung;Jang, Hyun-Sic
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.155-167
    • /
    • 2010
  • In analysis of slope stability, deterministic analysis which yields a factor of safety has been used until recently. However, probability of failure is considered as a more efficient method because it deals with the uncertainty and variability of rock mass. In both methods, a factor of safety or a probability of failure is calculated for a slope although characteristics of rock mass, such as characteristics of joints, weathering degree of rock and so on, are not uniform throughout the slope. In this paper, we divided a model slope into several zones depending on conditions of rock mass and joints, and probabilities of failure in each zone are calculated and compared with that calculated in whole slope. The persistence of joint was also used as a parameter in calculation of probability of failure. A rock slope located in Hongcheon, Gangwondo was selected and the probability of failure using zoning and persistence as parameter was calculated to confirm the applicability of model analysis.

Maximizing Mean Time to the Catastrophic Failure through Burn-In

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.997-1005
    • /
    • 2003
  • In this paper, the problem of determining optimal burn-in time is considered under a general failure model. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. In this model, when the unit fails at its age t, Type I failure occurs with probability 1 - p(t) and Type II failure occurs with probability p(t), $0{\leq}p(t)\leq1$. Under the model, the properties of optimal burn-in time maximizing mean time to the catastrophic failure during field operation are obtained. The obtained results are also applied to some illustrative examples.

  • PDF