• Title/Summary/Keyword: Failure Pin

Search Result 148, Processing Time 0.027 seconds

Tensile Behavior of Pin-Loaded Carbon/Epoxy Composite Laminates (핀하중을 받는 탄소섬유/에폭시 복합적층판의 인장거동)

  • 박동창;황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2518-2534
    • /
    • 1993
  • Fracture behavior of carbon/epoxy laminates under pin loading is studied experimentally and analytically. Effects of ratios of specimen width to hole diameter and edge distance to hole diameter on bearing strength are investigated. Characteristic length of the laminates obtained using HK model has good agreement with the experimental data. The larger hole size induced, the lower bearing strength is measured under pin loading . The bearing strength and failure mode could be predicted using HK model and Zhangs analytical solution of stress distribution around a pin loaded hole. Chamis' prediction method of bearing strength is also considered to predict failure mode and bearing strength. A modification of Chamis' method is made using the factor of rupturc. The predicted bearing strength by the modified method is reasonably close to the experimental data.

Temperature, Current, and Voltage Dependences of Junction Failure in PIN Photodiodes

  • Park, Sahng-Gi;Sim, Eun-Deok;Park, Jeong-Woo;Sim, Jae-Sik;Song, Hyun-Woo;Oh, Su-Hwan;Baek, Yong-Soon
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.555-560
    • /
    • 2006
  • A PIN photodiode having a low dark current of 1.35 nA and a high external quantum efficiency of 95.3% fabricated for a passive optical network receiver. As the current was increased under a high voltage of 38 V and a temperature of $190^{\circ}C$, it was observed that there is a threshold current at 11 mA which induces a junction failure. Experimental data suggest that the junction failure occurs due to the crystal breaking at the end facet as a result of thermal heat or energetic carriers. This threshold behavior of junction failure is a valuable observation for the safe treatment of photodiodes. As long as the current is limited below the threshold currents, we have not observed failure events of our photodiodes.

  • PDF

Failure Behavior of Pin-jointed Carbon/Epoxy Composites using Acoustic Emission (음향방출법을 이용한 탄소섬유/에폭시 복합재의 핀 체결부 파괴거동)

  • Kim, Chan-Gyu;Hwang, Young-Eun;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.520-522
    • /
    • 2011
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test. The composites were fabricated by a filament winding process, and two types of laminated patterns were considered. According to the results, type 1 pattern revealed a net-tension failure mode, whereas type 2 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the type 2 pattern was higher than that of the type 1 pattern. Therefore, the type 2 pattern was found to be structurally safer than the type 1 pattern.

  • PDF

Failure of Cross-Pin Femoral Fixation after Anterior Cruciate Ligament Reconstruction - A Case Report - (전방십자인대 재건술후 대퇴골 경골핀 고정의 실패 - 증례보고 -)

  • Lee Kee-Byoung;Kwon Duck-Joo;Ji Yong-Nam
    • Journal of the Korean Arthroscopy Society
    • /
    • v.7 no.1
    • /
    • pp.92-95
    • /
    • 2003
  • A 34-year-old man with ACL total rupture due to slip down injury, had received ACL reconstruction using autogenous hamstrings tendon with cross-pin femoral fixation. Postoperative course was as usual. But postoperative 3 months later, he complained posterolateral knee pain, recurrent effusion and mild instability. He was managed repeatitive aspiration and nonsteroid antiinflammatory drugs but was failed to relieve symptoms & signs. In CT scans, perforation of posteromedial femoral cortex of lateral femoral condyle was found. In second look arthroscopy, two pieces of broken femoral cross pin were found in between tibiofemoral Joint which was badly injured cartilage. We considered malposition of pins was the main cause of failure. We propose that femoral tunnel must be made more acute angle and femoral cross-pin guide must be positioned more external rotation 10-20 degree than transepicondylar axis made confirm the cross-pin tunnel position in order to avoid posterior cortex perforation and early failure.

  • PDF

Behaviour and design of structural steel pins

  • Bridge, R.Q.;Sukkar, T.;Hayward, I.G.;van Ommen, M.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.97-110
    • /
    • 2001
  • Architectural steel structures with visible tension and compression members are becoming more prevalent as a popular form of construction that reflects the nature of the resistance to the applied loads. These members require the use of structural steel pins at their ends to ensure either axial tension or axial compression in the members. Structural pins have been used as a means of connection for centuries and it would appear that their behaviour is relatively well understood. However, the rules for the design of pins vary quite considerably from code to code and this has caused some confusion amongst consulting structural engineers operating internationally. To provide some insight into this problem, a comprehensive testing program has been carried to examine the influence of parameters such as pin diameter, material properties of the pin, thickness of the loading plates, material properties of the loading plates and the distance of the pin to the edge of the loading plates. The modes of failure have been carefully examined. Based on this study, modifications to current design procedures are proposed that properly take into account the different possible modes of failure.

Mechanical Behavior of Steel Pipe Pin-Cups Embedded in Concrete (콘크리트에 매입된 강관 핀컵의 역학적 거동)

  • Jo, Jae Byung;Im, Seok Bean
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.705-712
    • /
    • 2004
  • To investigate the mechanical behavior of pin cups created from steel pipes embedded in concrete, test blocks were made and load tests were conducted. The pin was inserted in the pin cup at various depths and was loaded in a lateral direction at a constant displacement speed. A formula, which took into consideration the deformation and failure shapes of the pin cups, observed during and after the tests, was used to estimate its mechanical behavior. The test values were determined to be relevant to the formula and were distributed within a reasonably narrow range. The mean and the 95% survival probability value of maximum resistance were determined by factoring the formula at 1.01 and 0.92, respectively.

A Study on the Pin Bearing Strength of Angle Ply CFRP Composites (CFRP 사교적층판의 핀 베어링강도에 관한 연구)

  • 전진탁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.339-345
    • /
    • 1998
  • The purpose of this paper is to investigate the effect of the specimen geometries on the pin bearing strength of the angle ply carbon fiber reinforced composites. The effect of the edge distance and the specimen width on the pin bearing strength of angle ply CFRP composites are experimentally investigated in this paper. As results, the failure mode and pin bearing strength of mechanical joints turned out to depends on the stacking sequence and specimen geometries such as the edge distance and the specimen width. The higher pin bearing strength obtained for the angle ply CFRP composites is attributed to a combination of debonding, pull out, buckling and breakage of fiber and also the matrix cracking.

  • PDF

Three-dimensional contact analysis of a composite joint with unsymmetric boundary condition (비대칭 경계조건을 가지는 체결부의 3차원 접촉응력해석)

  • 장기정;박노회;안현수;권진회;최진호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.110-113
    • /
    • 2002
  • As a preliminary study for the three dimensional failure analysis of composite joints, the three dimensional stress analysis on a pin-loaded unidirectional-fabric hybrid composite joints are performed. The contact and frictions between composite plate and metal bush are considered in the finite element method by NASTRAN. Experiments are conducted to validate the accuracy and feasibility of the finite element technique for 25 specimens with 5 different geometries. The finite element and experimental results show the bush cap induces the unsymmetric deformation, stress distribution, and failure behavior through the thickness. The experiment also shows the failure loads are higher in the joint with bush cap than without it.

  • PDF

A Study of User Behavior Recognition-Based PIN Entry Using Machine Learning Technique (머신러닝을 이용한 사용자 행동 인식 기반의 PIN 입력 기법 연구)

  • Jung, Changhun;Dagvatur, Zayabaatar;Jang, RhongHo;Nyang, DaeHun;Lee, KyungHee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.5
    • /
    • pp.127-136
    • /
    • 2018
  • In this paper, we propose a PIN entry method that combines with machine learning technique on smartphone. We use not only a PIN but also touch time intervals and locations as factors to identify whether the user is correct or not. In the user registration phase, a remote server was used to train/create a machine learning model using data that collected from end-user device (i.e. smartphone). In the user authentication phase, the pre-trained model and the saved PIN was used to decide the authentication success or failure. We examined that there is no big inconvenience to use this technique (FRR: 0%) and more secure than the previous PIN entry techniques (FAR : 0%), through usability and security experiments, as a result we could confirm that this technique can be used sufficiently. In addition, we examined that a security incident is unlikely to occur (FAR: 5%) even if the PIN is leaked through the shoulder surfing attack experiments.

Determination of Deterioration and Damage of Porcelain Insulators in Power Transmission Line Through Mechanical Analysis (기계적 분석을 통한 송전용 자기 애자의 열화 판단 및 파손 부위에 대한 연구)

  • Son, Ju-Am;Choi, In-Hyuk;Koo, Ja-Bin;Kim, Taeyong;Jeon, Seongho;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.50-55
    • /
    • 2020
  • Porcelain insulators have been used for a long time in 154 kV power transmission lines. They are likely to be exposed to sudden failure because of product deterioration. This study was conducted to evaluate the quality of porcelain insulators. After stresses were applied, the damaged regions of aged insulators were investigated in terms of chemical composition, material structure, and other properties. For porcelain insulators that were in service for a long time, the mechanical failure load was 126 kN, whereas the average mechanical failure load was 167.3 kN for new products. It was also determined that corrosion occurred at the metal pin part due to the penetration of moisture into the gap between the pin and the ceramic. Statistical analyses of failure were performed to identify the portion of the insulators that were broken. Cristobalite porcelain insulators fabricated without alumina additives had a high failure rate of 54% for the porcelain component. In the case of the addition of Alumina (Al2O3) to the porcelain insulators to improve the strength of the ceramic component, a more frequent damage rate of the cap and pin of 73.3% and 27%, respectively, was observed. This study reports on the material component of SiO2 and the percentage of alumina added, with respect to the mechanical properties of porcelain insulators.