• Title/Summary/Keyword: Failure Model

Search Result 4,540, Processing Time 0.033 seconds

Modeling Partially Dependent Double Failure States of Pressure Safety Valves (압력안전밸브의 부분적 종속 이중 고장상태 모델링)

  • Choi, Soo Hyong
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.40-43
    • /
    • 2018
  • For pressure safety valves, open failure and close failure are partially dependent on each other. A method is proposed in this work that uses a Markov process model and a Weibull distribution model in order to construct a reliability model for two kinds of failure. A pressure safety valve model is obtained from a known open failure model, an induced close failure model, and a simultaneous failure model that reproduces recently reported inspection results. It is expected that the application of the proposed method can be expanded to quantitative risk assessment of various systems that have partially dependent multiple failure states.

Reliability Prediction Based on Field Failure Data of Guided Missile (필드데이터 기반의 유도탄 신뢰도 예측)

  • Seo, Yangwoo;Lee, Kyeshin;Lee, Younho;Kim, Jeyong
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.250-259
    • /
    • 2018
  • Purpose: Previously, missile reliability prediction is based on theoretical failure prediction model. It has shown that the predicted reliability is inadequate to real field data. Although an MTTF based reliability prediction method using real field data has recently been studied to overcome this issue. In this paper, we present a more realistic method, considering MTBF concept, to predict missile reliability. Methods: In this paper we proposed a modified survival model. This model is considering MTBF as its core concept, and failed missiles in the model are to be repaired and redeployed. We compared the modified model (MTBF) and the previous model (MTTF) in terms of fitness against the real failure data. Results: The reliability prediction result of MTBF based model is closer to fields failure data set than that of MTTF based model. Conclusion: The proposed MTBF concept is more fitted to real failure data of missile than MTTF concept. The methodology of this study can be applied to analyze field failure data of other similar missiles.

The auto regression model of bus fleet failure number

  • Zhou, Y.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • This paper uses the auto regression model to modeling failure number of a bus fleet. The fitted model can be used to predict the failure number in the future. A numerical example is presented to illustrate the modeling process and the appropriateness of the fitted model. At last, some possible applications of the model are discussed.

  • PDF

Semiparametric accelerated failure time model for the analysis of right censored data

  • Jin, Zhezhen
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.467-478
    • /
    • 2016
  • The accelerated failure time model or accelerated life model relates the logarithm of the failure time linearly to the covariates. The parameters in the model provides a direct interpretation. In this paper, we review some newly developed practically useful estimation and inference methods for the model in the analysis of right censored data.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

Maintenance Model for Multi-Component System Considering Failure Types (고장형태(故障形態)를 고려한 다부품장비(多部品裝備)의 보전모형(保全模型))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.33-42
    • /
    • 1990
  • This paper proposes the maintenance model of multi-component system when the failure characteristics and types of components are considered. In this model, it is assumed that a system is composed of a critical component, a major component and a minor component. Also, failure types is classified into major failure and minor failure. If major failure occurs to critical component before system age replacement time, the system is renewed. If major failure does not occur until its age replacement time, preventive maintenance is performed at age replacement time T. Minimal repairs are carried out after each minor failure. Major component is minimal-repaired if any failure is discovered during operation. Minor component should be replaced as soon as any failure is found. This paper determines the optimal replacement time of the system which minimizes total maintenance cost. Numerical example illustrates these results.

  • PDF

Damage-controlled test to determine the input parameters for CWFS model and its application to simulation of brittle failure (CWFS모델변수 결정을 위한 손상제어시험 및 이를 활용한 취성파괴모델링)

  • Cheon, Dae-Sung;Park, Chan;Jeon, Seok-Won;Jung, Yong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.263-273
    • /
    • 2007
  • When a tunnel or an underground structure is excavated in deep geological environments, the failure process is affected and eventually dominated by stress-induced fractures growing preferentially parallel to the excavation boundary. This fracturing is generally referred to as brittle failure by spatting and slabbing. Continuum models with traditional failure criteria such as Hoek-Brown or Mohr-Coulomb criteria have not been successful in prediction of the extent and depth of brittle failure. Instead cohesion weakening and frictional strengthening (CWFS) model is known to predict brittle failure well. In this study, CWFS model was applied to predict the brittle failure around a circular opening observed in physical model experiments. To obtain the input parameters for CWFS model, damage-controlled tests were carried out. The predicted depth and extent of brittle failure using CWFS model were compared to the results of the physical model experiment and numerical simulation using traditional model.

  • PDF

Monitoring & Analysis on Excavation Failure Modes by Centrifugal Model Experiment (원심모형실험에 의한 지하굴착 붕괴양상에 관한 계측 및 해석)

  • Heo, Y.;Ahn, K.K.;Lee, C.K.
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.135-142
    • /
    • 1998
  • This paper is to investigate the failure surface and modes in a soil mass by a excavation of the model ground. To study the failure surface for the excavated slope, centrifugal model tests were performed by changing the angle of the excavated slope(50, 75, $90^{\circ}$) and the ground condition($D_r$=60, 90%, dry and submerged ground). Excavation was simulated during the centrifuge tests by operating a valve that allowed the zinc chloride solvent to drain from the excavation. Results of model tests were compared with those obtained with theoretical solutions using limit equilibrium analysis method. The results of model tests show that, there is a failure to create a straight line in the low angle of excavated surface and a create a circle as the angle increases. Also, as the angle of excavated surface is increasing, the angle of the failure surface increases. The failure length in the submerged ground increases approximately 1.10~1.34 times more than that of the dry ground.

  • PDF

Sensitivity of the $217Plus^{TM}$ System Model to Failure Causes (고장요인들에 대한 $217Plus^{TM}$ 시스템 모형의 민감도)

  • Jeon, Tae-Bo
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.387-398
    • /
    • 2011
  • $217Plus^{TM}$, a newly developed as a surrogate of the MIL-HDBK-217, may be widely applied for reliability predictions of electronic systems. In this study, we performed sensitivity study of the $217Plus^{TM}$ system model to various parameters. Specific attention was put to logistics model and its behavior has been examined in terms of non-component failure causes. We first briefly explained the $217Plus^{TM}$ methodology with system level failure rate evaluation. We then applied experimental designs with several failure causes as factors. We used an orthogonal array with three levels of each parameter. Our results indicate that cannot duplicate, induced, and wear-out causes have dominant effects on the system failures and design, parts, and system management have much less but a little strong effects. The results in this study not only figure out the behavior of the predicted failure rate as functions of failure causes but provide meaningful guidelines for practical applications.