• Title/Summary/Keyword: Failure Mode and Effects Analysis

Search Result 203, Processing Time 0.031 seconds

Effects of coating Condition on Adhesive strength Ti$_{x}$N Films Prepared by the DC Magetron Sputtering Method (DC magnetron Sputtering 법으로 제작한 Ti$_{x}$N 박막의 밀착력에 미치는 코팅조건의 영향)

  • 김학동;조성석
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Stainless steel is being used widely lor various purposes due to its good corrosion resistance. There has becn much research to produce colored stainless sterl by several methods. In this experiment, we coated TixN film on the SUS304 substrate with thc DC magnetron sputtering system and studied the internal structurc and adhesive strength of the films as a function of the coating conditions. Before lhe specimen was coated, a sputter etching was very effective in removing the$\delta$ Fe(BCC) phase as well as the contaminant and oxide layer as well as increasing rotghness. Five-stage failure mode appeared with increased scratch load with the TIN films coated on the SUS304 in this manner ; tensile failure-,conformal failure-,buckling failure->chipping failurc and spalling Failure. When the failure was terminated at the initial stage, the film will have good adhesion. But, if syalling failure has occurred at the initial scratch, then the adhesion will be poor. The interlayer between thc coated film and thc substratc was homogeneously adhcsive when the $\gamma'-Fe_4N$ phase wasn't detected in the XRD analysis and the adhesive strength only was reduced by surPace defects. But, when the ,$\gamma'-Fe_4N$N phasc was detected in the XRD analysis, the adhesive strength was very poor.

  • PDF

Measurement of a Diagnostic Coverage for a Digital Signal Processor Board Using an FMEDA (FMEDA를 활용한 디지털 신호처리기 보드의 진단 유효범위의 측정)

  • Keum, Jong-Yong;Suh, Yong-Suk;Lee, Jun-Koo;Park, Je-Yun
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Good diagnostics improves both the safety and system unavailability of digital safety systems. The measure of a diagnostic capability is called the Coverage Factor. Because the Failure Modes, Effects and Diagnostic Analysis (FMEDA) provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a component, the FMEDA can be used as a useful tool to calculate it. Through performing FMEDA on a digital signal processor (DSP) board used in a digital safety system, it is shown that some components of the DSP board can be replaced or improved to satisfy the required diagnostic coverage. That is, the FMEDA can serve as a useful verification tool to design a diagnostic capability for the DSP board.

  • PDF

Fault Prognostics of a SMPS based on PCA-SVM (PCA-SVM 기반의 SMPS 고장예지에 관한 연구)

  • Yoo, Yeon-Su;Kim, Dong-Hyeon;Kim, Seol;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.47-52
    • /
    • 2020
  • With the 4th industrial revolution, condition monitoring using machine learning techniques has become popular among researchers. An overload due to complex operations causes several irregularities in MOSFETs. This study investigated the acquired voltage to analyze the overcurrent effects on MOSFETs using a failure mode effect analysis (FMEA). The results indicated that the voltage pattern changes greatly when the current is beyond the threshold value. Several features were extracted from the collected voltage signals that indicate the health state of a switched-mode power supply (SMPS). Then, the data were reduced to a smaller sample space by using a principal component analysis (PCA). A robust machine learning algorithm, the support vector machine (SVM), was used to classify different health states of an SMPS, and the classification results are presented for different parameters. An SVM approach assisted by a PCA algorithm provides a strong fault diagnosis framework for an SMPS.

FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic (결함수분석법과 퍼지논리를 이용한 FMECA 평가)

  • Kim, Dong-Jin;Shin, Jun-Seok;Kim, Hyung-Jun;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

Application of Reliability Centered Maintenance Strategy to Safety Injection System for APR1400

  • Rezk, Osama;Jung, JaeCheon;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • Reliability Centered Maintenance (RCM) introduces a systematic method and decision logic tree for utilizing previous operating experience focused on reliability and optimization of maintenance activities. In this paper RCM methodology is applied on safety injection system for APR-1400. Functional Failure Mode Effects and Criticality Analysis (FME&CA) are applied to evaluate the failure modes and the effect on the component, system and plant. Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The results show that increasing the condition based maintenance will reduce component failure and improve reliability and availability of the system. Also the extension of the surveillance test interval of Safety Injection Pumps (SIPs) would lead to an improved pump's availability, eliminate the unnecessary maintenance tasks and this will optimize maintenance activities.

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Acoustic Emmision Characteristics according to Failure Modes of Pipes with Local Wall Thinning (감육배관의 손상모드에 따른 음향방출 특성)

  • 안석환;남기우;김선진;김진환;김현수;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.66-72
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding region, plastic deformation region and crack progress region could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. The result of the frequency range is expected to be basic data that can inspect plants in real-time.

Deformation and Fracture Behavior of Wall Thinned Carbon Steel Pipes (감육된 탄소강배관의 변형과 파괴거동)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.17-23
    • /
    • 2006
  • Monotonic four-point bending tests were conducted on straight pipe specimens, 102 mm in diameter with local wall thinning, in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated natural erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classifiedas local buckling, ovalization, or crack initiation, depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.

Probabilistic ultimate strength analysis of submarine pressure hulls

  • Cerik, Burak Can;Shin, Hyun-Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.101-115
    • /
    • 2013
  • This paper examines the application of structural reliability analysis to submarine pressure hulls to clarify the merits of probabilistic approach in respect thereof. Ultimate strength prediction methods which take the inelastic behavior of ring-stiffened cylindrical shells and hemi-spherical shells into account are reviewed. The modeling uncertainties in terms of bias and coefficient of variation for failure prediction methods in current design guidelines are defined by evaluating the compiled experimental data. A simple ultimate strength formulation for ring-stiffened cylinders taking into account the interaction between local and global failure modes and an ultimate strength formula for hemispherical shells which have better accuracy and reliability than current design codes are taken as basis for reliability analysis. The effects of randomness of geometrical and material properties on failure are assessed by a prelimnary study on reference models. By evaluation of sensitivity factors important variables are determined and comparesons are made with conclusions of previous reliability studies.