• Title/Summary/Keyword: Failure Mode Ratio

Search Result 335, Processing Time 0.027 seconds

Quasi Static Test of Lap Spliced Shear-Flexure RC Piers Using Real Scale Models (주철근 겹침이음된 휨-전단 RC교각의 실물모형 준정적 실험)

  • 곽임종;조창백;조정래;김영진;김병석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.203-210
    • /
    • 2002
  • The past bridge design specifications of Korea didn't include 1imitation on the amount of lap splices in the plastic hinge zone of piers, and so do current specifications. But these specifications include just limitation on the minimal length of lap splices. Thus, a large majority of non-seismically designed bridge piers may have lap splices in plastic hinge zone. In this study, model pier was selected among existent bridge piers whose failure mode is complex shear-flexure mode. Full scaled RC pier models whose aspect ratio is about 2.67 were constructed and quasi static test according to the drift level history was implemented. From the test results, effect of the lap splices on the seismic performance of bridges piers was analyzed, and the seismic capacity of the model bridges was evaluated by capacity spectrum method.

  • PDF

Parametric study on eccentrically-loaded partially encased composite columns under major axis bending

  • Begum, Mahbuba;Driver, Robert G.;Elwi, Alaa E.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1299-1319
    • /
    • 2015
  • This paper presents a detailed parametric study, conducted using finite element tools to cover a range of several geometric and material parameters, on the behaviour of thin-walled partially encased composite (PEC) columns. The PEC columns studied herein are composed of thin-walled built-up H-shaped steel sections with concrete infill cast between the flanges. Transverse links are provided between the opposing flanges to improve resistance to local buckling. The parametric study is confined to eccentrically-loaded columns subjected to major axis bending only. The parameters that were varied include the overall column slenderness ratio (L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), flange plate slenderness ratio (b/t) and concrete compressive strength ($f_{cu}$). The overall column slenderness ratio was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were varied within each case of L/d ratio. The effects of the selected parameters on the behaviour of PEC columns were studied with respect to the failure mode, peak axial load, axial load versus average axial strain response, axial load versus lateral displacement response, moment versus lateral displacement behaviour and the axial load-moment interaction diagram. The results of the parametric study are presented in the paper and the influences of each of the parameters investigated are discussed.

Investigation on the Flexural and Shear Behavior of Fiber Reinforced UHSC Members Reinforced with Stirrups (전단철근과 강섬유로 보강된 초고강도 콘크리트 부재의 휨 및 전단 거동에 관한 연구)

  • Yuh, Ok-Kyung;Ji, Kyu-Hyun;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.152-163
    • /
    • 2019
  • In this paper, effect of steel fiber inclusion, compressive strength of matrix, shear reinforcement and shear span to depth ratio on the flexural behavior of UHPFRC(Ultra High Performance Fiber Reinforced Concrete) were investigated with test of 10-UHPFRC beam specimens. All test specimens were subjected to the flexural static loading. It was shown that steel fiber significantly improve the shear strength of UHPFRC beams. 2% volume fraction of steel fiber change the mode of failure from shear failure to flexural failure and delayed the failure of compressive strut with comparatively short shear span to depth ratio. UHPFRC beams without steel fiber had a 45-degree crack angle and fiber reinforced one had lower crack angle. Shear reinforcement contribution on shear strength of beams can be calculated by 45-degree truss model with acceptable conservatism. Using test results, French and Korean UHPFRC design recommendations were evaluated. French recommendation have shown conservative results on flexural behavior but Korean recommendation have shown overestimation for flexural strength. Both recommendations have shown the conservatism on the flexural ductility and shear strength either.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns

  • Yang, Yong;Chen, Yang;Zhang, Jintao;Xue, Yicong;Liu, Ruyue;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • This paper experimentally and analytically elucidates the shear behavior and shear bearing capacity of partially prefabricated steel reinforced concrete (PPSRC) columns and hollow partially prefabricated steel reinforced concrete (HPSRC) columns. Seven specimens including five PPSRC column specimens and two HPSRC column specimens were tested under static monotonic loading. In the test, the influences of shear span aspect ratio and difference of cast-in-place concrete strength on the shear behavior of PPSRC and HPSRC columns were investigated. Based on the test results, the failure pattern, the load-displacement behavior and the shear capacity were focused and analyzed. The test results demonstrated that all the column specimens failed in shear failure mode with high bearing capacity and good deformability. Smaller shear span aspect ratio and higher strength of inner concrete resulted in higher shear bearing capacity, with more ductile and better deformability. Furthermore, calculation formula for predicting the ultimate shear capacity of the PPSRC and HPSRC columns were proposed on the basis of the experimental results.

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Relation between Shear Strength of Masonry infills and Seismic Performance of Masonry-infilled Frames (조적채움벽의 전단강도에 따른 채움벽골조의 내진성능)

  • Yu, Eunjong;Kim, Min Jae;Lee, Sang Hyun;Kim, Chung Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.173-181
    • /
    • 2015
  • In this study, material tests were performed on the masonry specimens constructed with bricks and mortar used in Korea. The specimens included two types of thickness(0.5B and 1.0B) and physical conditions (good and poor). It was shown that 1.0B specimens have 3.2~1.8 times larger shear strength than 0.5B specimens and shear strength of specimens in poor condition was 66%~38% of those in good condition. Average shear stress of masonry-infills was calculated from previous experimental studies, and relationships with failure mode, material strength of masonry, aspect ratio, and frame-to-infill strength ratio were investigated. In addition, the effects of masonry strength on the seismic performance of a masonry-infilled frame was studied using a simple example building. It can be seen that the obtained average shear stress were considerably higher than the default masonry shear strength recommended by the ASCE 41, and low values the strength of masonry does not guarantee conservative evaluation results due to the early shear failure of frame members.

Experimental and analytical study on continuous GFRP-concrete decks with steel bars

  • Tong, Zhaojie;Chen, Yiyan;Huang, Qiao;Song, Xiaodong;Luo, Bingqing;Xu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.737-749
    • /
    • 2020
  • A hybrid bridge deck is proposed, which includes steel bars, concrete and glass-fiber-reinforced-polymer (GFRP) plates with channel sections. The steel bar in the negative moment region can increase the flexural stiffness, improve the ductility, and reduce the GFRP ratio. Three continuous decks with different steel bar ratios and a simply supported deck were fabricated and tested to study the mechanical performance. The failure mode, deflection, strain distribution, cracks and support reaction were tested and discussed. The steel bar improves the mechanical performance of continuous decks, and a theoretical method is proposed to predict the deformation and the shear capacity. The experimental results show that all specimens failed with shear failure in the positive moment region. The increase of steel bar ratio in the negative moment region can achieve an enhancement in the flexural stiffness and reduce the deflection without increasing GFRP. Moreover, the continuous deck can achieve a yield load, and the negative moment can be carried by GFRP plates after the steel bar yields. Finally, a nonlinear analytical method for the deflection calculation was proposed and verified, with considering the moment redistribution, non-cracked sections and nonlinearity of material. In addition, a simplified calculation method was proposed to predict the shear capacity of GFRP-concrete decks.

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.

An Experimental Study on the Self-excited Instabilities in Model Gas Turbine Combustor (모델 가스터빈 연소기내의 자발 불안정성에 관한 실험적 연구)

  • Lee, Min-Chul;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.197-205
    • /
    • 2004
  • Most of gas turbines is operated by the type of dry premixed combustion to reduce NOx emission and economize fuel consumption. However this type operation, combustion induced instability brought failure problems cause by high pressure and heat release fluctuations. Though there has been lots of studies since Lord Rayleigh to understand this instability mechanism and control the instabilities, none of them made matters clear. In order to understand the instability phenomena, a simple experimental study with dump combustor was conducted at the moderate pressure and ambient temperature conditions. From this model gas turbine combustor self-excited instabilities at the resonance mode(200Hz) and bulk mode(10Hz) were occurred and observed at the three points of view; pressure, heat release and equivalence ratio which are acquired by peizo-electric transducer, HICCD camera and acetone LIF respectively. From this results we could see the instability mechanism clear with the account of time scale analysis which explained by the propagation of pressure wave to the upward of mixture stream and convectional transfer of the equivalence ratio fluctuation by this pressure fluctuation.

  • PDF