• Title/Summary/Keyword: Failure Load

Search Result 3,023, Processing Time 0.035 seconds

Structural Safety Assessment of a Sunken Ship Considering Hull Corrosion and Damaged Members - Focus on the Sunken Ship 'No. 7 HaeSung' - (선체 부식 및 손상 부재를 고려한 침몰선박의 구조 안전성 평가에 관한 연구 - 제7 해성호를 중심으로 -)

  • Lee, Seung Hyun;Kim, Won Don;Suh, Jae-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.332-340
    • /
    • 2016
  • Sunken ships cause damage to the environment due to the dispersal of fuel oil and harmful cargo goods in the hull. Since the sunken ship is mostly flooded by the seabed, it tends to be in a relatively stable condition. However, the heavy body, together with the load of remaining goods in the cargo hold, the constant contact with the seabed, and ocean currents and tidal waves, can affect dispersal of residual fuel oils out of the sunken ship. Corrosion of the sunken ship starts upon sinking, decreasing the thickness of the hull structure and sub-materials. Therefore, it is necessary to assess the structural stability against the potential breakdown of the sunken ship. Whilst evaluating the danger of the sunken ship, this result should be reflected in 'the possible discharge'. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship. The structural stability assessment to estimate the collapsibility of the hull was structure targeted at the sunken ship 'No. 7 HaeSung', which was classified as the prime example for the intensive management of sunken ships. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship and to propose a method to conduct a structural safety assessment that estimates the collapsibility of the hull by targeting the sunken ship 'No. 7 HaeSung',which was classified as the prime example for the intensive management of sunken ships. The collapsibility of the hull structure was estimated Based on the damage size of the hull structure, and the corrosion rate of the hull structure and sub-materials due to the seawater after sinking. It was confirmed that there was a low possibility of the total destruction of the hull structure at the current time. However, there is a high possibility in the potential failure of the hull structure due to increased rate of corrosion thereafter. Therefore, we believe continuous study on influence of corrosion and marine environment change to sunken ship's structural safety is necessary.

Comparative study of fracture strength depending on the occlusal thickness of full zirconia crown (완전 지르코니아 크라운의 교합면 두께에 따른 파절강도의 비교 연구)

  • Jang, Soo-Ah;Kim, Yoon-Young;Park, Won-Hee;Lee, Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the fracture strength of traditional metal-ceramic crowns and full zirconia crowns according to the occlusal thickness. Materials and methods: A mandibular first molar resin tooth was prepared with 1.5 mm occlusal reduction, 1.0 mm rounded shoulder margin and $6^{\circ}$ taperness in the axial wall. Duplicating the resin tooth, 64 metal dies were fabricated. 48 full zirconia crowns were fabricated using Prettau zirconia blanks by ZIRKONZAHN CAD/CAM and classified into six groups according to the occlusal thickness (0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm). 16 metal-ceramic crowns were fabricated and classified into two groups according to the occlusal porcelain thickness (1.0 mm, 1.5 mm). All crowns were cemented on each metal die and mounted in a universal testing machine. The load was directed at the functional cusp of each specimen until catastrophic failure occurred. One-way ANOVA, Tukey multiple comparison test (${\alpha}=.05$) and t-test (${\alpha}=.05$) were used. Results: The results were as follows. 1. The test 1 group (646.48 N) showed the lowest fracture strength (P<.05), and the value of the test 2.3.4.5 groups (866.40 N, 978.82 N, 1196.82 N, 1222.41 N) increased as thickness increased, but no significant difference were found with the groups (P>.05). The value of test 6 group (1781.24 N) was significantly higher than those of the other groups (P<.05). 2. There were no significant differences of the fracture strength of metal ceramic crowns according to occlusal porcelain thickness 1.0 mm (2515.71 N) and 1.5 mm (3473.31 N) (P<.05). Conclusion: Full zirconia crown needs to be 1.0 mm or over in occlusal thickness for the posterior area to have higher fracture strength than maximum bite force.

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Bond strength of fiber reinforced composite after repair (섬유 강화 컴포지트의 수리 후 접합 강도)

  • Kim, Min-Jung;Kim, Kyung-Ho;Choy, Kwang-Chul
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.188-197
    • /
    • 2006
  • Fiber reinforced composite (FRC) is usually used as a connector joining a few teeth into one unit in orthodontics. However, fracture often occurs during the two to three years of the orthodontic treatment period due to repeated occlusal loading or water sorption in the oral environment. We simulated the repair by overlapping and attaching portions of two FRC strips in the middle and performed a three-point bending test to investigate the changes of the repair strength among the different FRC groups. The specimens were grouped according to the overlapping lengths of the two FRC strips, which were 1, 2, 3 and 4 mm (group E1, E2, E3 and E4, respectively) and the control group consisted of unrepaired, intact FRC strips. Each group consisted of 6 specimens and were cured with a light emitting diode curing unit. Group E4 showed the highest maximum loads of 2.67 N, then the control group (2.39 N), group E3 (2.35 N), E2 (2.10 N), and E1 (1.75 N) in decreasing order. Group E4 also showed the highest stiffness, which was 2.32 N/mm, however, the stiffness of group E3 (2.06N/mm) was higher than that of the control group (1.88 N/mm). According to the visual examination, the specimens tended to be bent rather than being fractured into two pieces with an increased length of overlapping portions. The above results suggest that a minimum overlapping length of 3 mm was necessary to obtain an adequate repair of a 10 mm length of FRC connector. In addition, the critical section adjacent to the joint area, where the thickness decreased abruptly, should be reinforced with flowable resin to minimize the bending tendency.

A study on the shear bond strengths of veneering ceramics to the colored zirconia core (착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kang, Sun-Nyo;Cho, Wook;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.312-319
    • /
    • 2009
  • Statement of problem: Delamination of veneering porcelain from underlying ceramic substructures has been reported for zirconia-ceramic restorations. Colored zirconia cores for esthetics have been reported that their bond strength with veneered porcelain is weaker compared to white zirconia cores. Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the colored zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing the result of this with that of conventional metal ceramic system. Material and methods: A Metal ceramic (MC) system was tested as a control group. The tested systems were Katana zirconia with CZR (ZB) and Katana Zirconia with NobelRondo Press (ZP). Thirty specimens, 10 for each system and control, were fabricated. Specimen disks, 3 mm high and 12 mm diameter, were fabricated with the lost-wax technique (MC) and the CAD-CAM (ZB and ZP). MC and ZB specimens were prepared using opaque and dentin veneering ceramics, veneered, 3 mm high and 2.8 mm in diameter, over the cores. ZP specimens were prepared using heat pressing ingots, 3 mm high and 2.8mm in diameter. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50 mm/min until failure. Mean shear bond strengths (MPa) were analyzed with the One-way ANOVA. After the shear bond test, fracture surfaces were examined by SEM. Results: The mean shear bond strengths (SD) in MPa were MC control 29.14 (2.26); ZB 29.48 (2.30); and ZP 29.51 (2.32). The shear bond strengths of the tested systems were not significantly different (P > .05). All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers. Conclusion: 1. The shear bond strengths of the tested groups were not significantly different from the control group (P >.05). 2. There was no significant different between the layering technique and the heat pressing technique in the veneering methods on the colored zirconia core. 3. All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers.

Anti-osteoporotic Activity of Gojineumja Aqueous Extracts on the Ovariectomized Mice (난소적출 마우스에서 고진음자(固眞飮子) 물 추출물의 골다공증 개선 효과)

  • Cho, Su-Yun;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.4
    • /
    • pp.16-38
    • /
    • 2018
  • Objectives: The objective of this in vivo study is to observe the anti-osteoporotic activities of Gojineumja aqueous extracts (GJEJ) on the ovariectomized (OVX) mice as compared to those of risedronate sodium (RES). Methods: Thirty five days after bilateral OVX, GJEJ was orally administered, for 35 days once a day and then the changes on the body weight and gain during experimental periods, femur weights, bone mineral density (BMD), bone strength (failure load), mineral contents - calcium (Ca) and inorganic phosphorus (IP), histological profiles and histomorphometrical analyses at sacrifice were conducted with serum biochemistry - osteocalcin contents and bone specific alkaline phosphatase (BALP) activities. And the results of GJEJ were compared with RES orally administered OVX mice. Results: As a result of OVX, noticeable increase of body weight and gains and serum osteocalcin levels, decrease of serum BALP activities, femur weights, femur Ca and IP contents, BMD and strength were observed as compared to those of sham control mice, respectively. Also, the decrease of all histomorphometrical indices indicating the bone mass and structure, and the increase of indices about resorption were also detected in the femur of OVX control. However, these estrogen-deficient osteoporotic signs were significantly and dose-dependently inhibited by 35 days of continuous oral treatment of GJEJ, at dose levels of 500, 250 and 125 mg/kg, respectively. Especially, GJEJ 500 mg/kg showed favorable inhibitory activities against estrogen-deficient osteoporosis symptoms induced by OVX as comparable to those of RES 2.5 mg/kg. Conclusions: The results in this study suggest that oral administrations of GJEJ have clear dose-dependent favorable anti-osteoporotic activities in OVX mice.

SHEAR BOND STRENGTH AND MICROLEAKAGE OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF CONTAMINATED SURFACE AFTER APPLYING A BONDING AGENT (접착제 도포후 오염된 표면의 처리방법에 따른 복합레진의 전단결합강도와 미세누출)

  • Park, Joo-Sik;Lee, Suck-Jong;Moon, Joo-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.647-656
    • /
    • 1999
  • The purpose of this study was to investigate the shear bond strength and marginal microleakage of composite to enamel and dentin according to different treatment methods when the applied bonding agent was contaminated by artificial saliva. For the shear bond strength test, the buccal and occlusal surfaces of one hundred twenty molar teeth were ground to expose enamel(n=60) and dentin surfaces(n=60). The specimens were randomly assigned into control and 5 experimental groups with 10 samples in each group. In control group, a bonding system(Scotchbond$^{TM}$ Multi-Purpose plus) and a composite resin(Z-100$^{TM}$) was bonded on the specimens according to manufacture's directions. Experimental groups were subdivided into 5 groups. After polymerization of an adhesive, they were contaminated with at artificial saliva on enamel and dentin surfaces: Experimental group 1 ; artificial saliva was dried with compressed air. Experimental group 2 ; artificial saliva was rinsed with air-water spray and dried. Experimental group 3 ; artificial saliva was rinsed, dried and applied an adhesive. Experimental group 4 ; artificial saliva was rinsed, dried, and then etched using phosphoric acid followed by an adhesive. Experimental group 5, artificial saliva was rinsed, dried, and then etched with phosphoric acid followed by consecutive application of both a primer and an adhesive. Composite resin(Z-100$^{TM}$) was bonded on saliva-treated enamel and dentin surfaces. The shear bond strengths were measured by universal testing machine(AGS-1000 4D, Shimaduzu Co. Japan) with a crosshead speed of 5mm/minute under 50kg load cell. Failure modes of fracture sites were examined under stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's test. For the marginal microleakage test, Class V cavities were prepared on the buccal surfaces of sixty molars. The specimens were divided into control and experimental groups. Cavities in experimental group were contaminated with artificial saliva and those surfaces in each experimental groups received the same treatments as for the shear test. Cavities were filled with Z-100. Specimens were immersed in 0.5% basic fuchsin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from the one specimen. Marginal microleakages of enamel and dentin were scored under streomicroscope and averaged from four sections. The data were analyzed by Kruskal-Wallis test and Fisher's LSD. The results of this study were as follows. 1. The shear bond strength to enamel showed lower value in experimental group 1(13.20${\pm}$2.94MPa) and experimental group 2(13.20${\pm}$2.94MPa) than in control(20.03${\pm}$4.47MPa), experimental group 4(20.96${\pm}$4.25MPa) and experimental group 5(21.25${\pm}$4.48MPa) (p<0.05). 2. The shear bond strength to dentin showed lower value in experimental group 1(9.35${\pm}$4.11MPa) and experimental group 2(9.83${\pm}$4.11MPa) than in control group(17.86${\pm}$4.03MPa), experimental group 4(15.04${\pm}$3.22MPa) and experimental group 5(14.33${\pm}$3.00MPa) (p<0.05). 3. Both on enamel and dentin surfaces, experimental group 1 and 2 showed many adhesive failures, but control and experimental group 3, 4 and 5 showed mixed and cohesive failures. 4. Enamel marginal microleakage was the highest in experimental group 1 and there was a significant difference in comparison with other groups (p<0.05). 5. Dentin marginal microleakages of experimental group 1 and 2 were higher than those of other groups (p<0.05). This result suggests that treatment methods, re-etching with 35% phosphoric acid followed by re-application of adhesive or repeating all adhesive procedures, will produce good effect on both shear bond strength and microleakage of composite to enamel and dentin if the polymerized bonding agent was contaminated by saliva.

  • PDF

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

CD45RA+ Depleted Lymphocyte Infusion for Treatment of Refractory Cytomegalovirus Disease in Complete DiGeorge Syndrome: A Case Report

  • HyungJin Chin;Young Hye Ryu;Da Yun Kang;Hyun Jin Park;Kyung Taek Hong ;Jung Yoon Choi;Ki Wook Yun;Bongjin Lee;Hyoung Jin Kang;Eun Hwa Choi
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • Complete DiGeorge syndrome (cDGS) refers to DGS with profound T cell deficiency. Herein, we present the case of an infant with cDGS suffering from refractory cytomegalovirus (CMV) infection and who was treated with CD45RA+ depleted lymphocyte infusion. The patient was diagnosed with cDGS by fluorescence in situ hybridization which verified 22q11.2 deletion and as well as by the observed profound T cell deficiency (CD3+ T cells 69/μL, CD4+ T cells 7/μL). On the 45th day of age, CMV viremia was first detected with a plasma viral load (VL) of 120,000 IU/mL. Ganciclovir treatment effectively reduced VL post 56 days of treatment; however, VL subsequently rebounded. A CMV UL97 phosphotransferase M460V mutation conferring ganciclovir resistance emerged and foscarnet was incorporated. Despite this, high titers of CMV viremia (VL 2,820,000 IU/mL) and CMV retinitis were complicated. To restore T cell immunity and treat refractory CMV infection, CD45RA+ depleted CMV-specific lymphocytes from the patient's father were infused twice on the 196th and 207th days after birth. After receiving the second infusion, a decline in CMV VL was observed, with a decrease to 87,100 IU/mL by the tenth day following infusion, despite the failure in maintaining T cell increase. The patient died of Pneumocystis jirovecii pneumonia and Elizabethkingia meningoseptica sepsis on the 222nd day after birth. CD45RA+ depleted lymphocyte infusion may be a therapeutic option for refractory CMV disease in cDGS patients.