• 제목/요약/키워드: Failure Analysis and Modeling

검색결과 429건 처리시간 0.024초

Quantitative risk assessment for wellbore stability analysis using different failure criteria

  • Noohnejad, Alireza;Ahangari, Kaveh;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.281-293
    • /
    • 2021
  • Uncertainties in geomechanical input parameters which mainly related to inappropriate data acquisition and estimation due to lack of sufficient calibration information, have led wellbore instability not yet to be fully understood or addressed. This paper demonstrates a workflow of employing Quantitative Risk Assessment technique, considering these uncertainties in terms of rock properties, pore pressure and in-situ stresses to makes it possible to survey not just the likelihood of accomplishing a desired level of wellbore stability at a specific mud pressure, but also the influence of the uncertainty in each input parameter on the wellbore stability. This probabilistic methodology in conjunction with Monte Carlo numerical modeling techniques was applied to a case study of a well. The response surfaces analysis provides a measure of the effects of uncertainties in each input parameter on the predicted mud pressure from three widely used failure criteria, thereby provides a key measurement for data acquisition in the future wells to reduce the uncertainty. The results pointed out that the mud pressure is tremendously sensitive to UCS and SHmax which emphasize the significance of reliable determinations of these two parameters for safe drilling. On the other hand, the predicted safe mud window from Mogi-Coulomb is the widest while the Hoek-Brown is the narrowest and comparing the anticipated collapse failures from the failure criteria and breakouts observations from caliper data, indicates that Hoek-Brown overestimate the minimum mud weight to avoid breakouts while Mogi-Coulomb criterion give better forecast according to real observations.

Virtual Qualification을 통한 자동차용 전장부품의 수명 평가 (Life Assessment of Automotive Electronic Part using Virtual Qualification)

  • 이해진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

수학적 모델링에서 집단창의성 발현사례 (Manifestation examples of group creativity in mathematical modeling)

  • 정혜윤;이경화
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제57권4호
    • /
    • pp.371-391
    • /
    • 2018
  • The purpose of this study is to analyze manifestation examples and effects of group creativity in mathematical modeling and to discuss teaching and learning methods for group creativity. The following two points were examined from the theoretical background. First, we examined the possibility of group activity in mathematical modeling. Second, we examined the meaning and characteristics of group creativity. Six students in the second grade of high school participated in this study in two groups of three each. Mathematical modeling task was "What are your own strategies to prevent or cope with blackouts?". Unit of analysis was the observed types of interaction at each stage of mathematical modeling. Especially, it was confirmed that group creativity can be developed through repetitive occurrences of mutually complementary, conflict-based, metacognitive interactions. The conclusion is as follows. First, examples of mutually complementary interaction, conflict-based interaction, and metacognitive interaction were observed in the real-world inquiry and the factor-finding stage, the simplification stage, and the mathematical model derivation stage, respectively. And the positive effect of group creativity on mathematical modeling were confirmed. Second, example of non interaction was observed, and it was confirmed that there were limitations on students' interaction object and interaction participation, and teacher's failure on appropriate intervention. Third, as teaching learning methods for group creativity, we proposed students' role play and teachers' questioning in the direction of promoting interaction.

소성-손상 모델을 이용한 콘크리트의 파괴해석 (Fracture Analysis of Concrete using Plastic-Damage Model)

  • 남진원;송하원;김광수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.534-541
    • /
    • 2004
  • The modeling of crack initiation and propagation is very important for the failure analysis of concrete. The cracking process in concrete is quite different from that of other materials, such as metal and glass, in that it is not a sudden onset of new free surface but a continuous forming and connecting of microcracks. The failure process of concrete by cracking causes irreversible deformations and stiffness degradation. Those phenomenon can be modeled using plasticity and damage theory in macroscopic aspect. In this study, a plastic-damage model based on homogenized crack model considering velocity discontinuity and damage variable which is a function of plastic strain is proposed for fracture analysis of concrete. Finally, the plastic-damage model is verified with experimental data.

  • PDF

Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation

  • Song, Chang Yong
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.316-324
    • /
    • 2020
  • This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.

저온환경에서 복합재료 핀 연결부의 Bearing 강도에 관한 연구 (A Study of Bearing Strength on Composite Pinned-Joint at Low Temperature)

  • 허남일;이상연;김재훈;이영신;사정우;조승연;임기학;오영국;최창호;도철진;권면;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.413-418
    • /
    • 2001
  • Fundamental failure mode in a laminated composite pinned-joint is proposed to assess damage resulting from stress concentration in the plate. The joint area is a region with stress concentrations thus a complicated stress state exists. The modeling of damage in a laminated composite pinned-joint presents many difficulties because of the complexity of the failure process. In order to model progressive from initial to final, finite element methods are used rather than closed form stress analyses. Failure analysis must be a logical combination of suitable failure criteria and appropriate material properties degradation rules. In this study, the material properties which were obtained in previous study, the preparing process of the bearing strength test for a pinned joint CFRP composite plate subjected to in-plane loading at low temperature, and the FEM result of progressive damage model using ANSYS program are summarized to assess the structural safety of CFRP plate used in the magnetic supporting post of KSTAR(Korea Superconducting Tokamak Advanced Research).

  • PDF

Neural network based modeling of infilled steel frames

  • Subramanian, K.;Mini, K.M.;Josephine Kelvina Florence, S.
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.495-506
    • /
    • 2005
  • A neural network based model is developed for the structural analysis of masonry infilled steel frames, which can account for the non-linearities in the material properties and structural behaviour. Using the data available from the analytical methods, an ANN model with input parameters consisting of dimension of frame, size of infill, properties of steel and infill was developed. It was found to be acceptable in predicting the failure modes of infilled frames and corresponding failure load subject to limitations in the training data and the predicted results are tested using the available experimental results. The study shows the importance of validating the ANN models in simulating structural behaviour especially when the data are limited. The ANN model was also compared with the available experimental results and was found to perform well.

Analysis of the failure mechanism and support technology for the Dongtan deep coal roadway

  • Chen, Miao;Yang, Sheng-Qi;Zhang, Yuan-Chao;Zang, Chuan-Wei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.401-420
    • /
    • 2016
  • The stability of deep coal roadways with large sections and thick top coal is a typical challenge in many coal mines in China. The innovative Universal Discrete Element Code (UDEC) trigon block is adopted to create a numerical model based on a case study at the Dongtan coal mine in China to better understand the failure mechanism and stability control mechanism of this kind of roadway. The failure process of an unsupported roadway is simulated, and the results suggest that the deformation of the roof is more serious than that of the sides and floor, especially in the center of the roof. The radial stress that is released is more intense than the tangential stress, while a large zone of relaxation appears around the roadway. The failure process begins from partial failure at roadway corners, and then propagates deeper into the roof and sides, finally resulting in large deformation in the roadway. A combined support system is proposed to support roadways based on an analysis of the simulation results. The numerical simulation and field monitoring suggest that the availability of this support method is feasible both in theory and practice, which can provide helpful references for research on the failure mechanisms and scientific support designing of engineering in deep coal mines.

고정 튜브시트를 갖는 수평형 열교환기의 등가 모델링을 이용한 튜브 건전성 평가 (Evaluation of Integrity of the Tubes in the Horizontal Fixed Tubesheet Heat Exchanger by Using Equivalent Modeling)

  • 전윤철;김태완;정동관
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.179-187
    • /
    • 2002
  • Finite element analysis was performed to evaluate the integrity of the tubes in the fixed tubesheet of horizontal type heat exchanger under operating condition. For the finite element analysis of the heat exchanger, tubes and tubesheets were equivalently modeled with concentroidal hexagonal columns and solid plates having equivalent properties for the convenience of finite element modeling, respectively. Load combination of tube pressure and thermal expansion most likely to precipitate possible failure of the tubes was selected and applied to the finite element analysis. The compressive stresses of the tubes were calculated based on displacements of each tube, which were obtained from anile element analysis. Finally, the maximum tube stress was compared with the design criterion of ASME Boiler and Pressure Vessel Code Section VIII.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.