• Title/Summary/Keyword: Fagopyrum

Search Result 158, Processing Time 0.026 seconds

Effect of Light Source on Organic Acid, Sugar, and Flavonoid Concentrations in Buckwheat

  • Kim, Sun-Lim;Lee, Han-Bum;Park, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • The major free sugars of buckwheat plants were fructose, glucose, and maltose but their contents and compositions were influenced by the different wavelength of light. Free sugar contents of Clfa 39 (Fagopyrum tataricum) were higher than those of Yangjul-maemil (Fagopyrum esculentum) regardless of the light sources. As treated with red and blue light, the free sugar contents in the leaves of buckwheat plants were slightly increased, but their contents in the stems and flowers were lower than those of natural light condition. Under the natural light condition, maltose was detected in every tissues of buckwheat plants, but as treated with blue and red light, it was not detected in the flowers of buckwheat plants. Citric, malic and acetic acid were detected as major organic acids in buckwheat plants. Red and blue lights decreased the total organic acid contents in buckwheat plants as compared with natural light condition. It was considered that blue light are less active than red light for the accumulation of organic acids. Tataric acid was detected only in the leaves of buckwheat plants, however, as treated with red and blue light, it was not detected in the leaves of Clfa 39. Flowers of Yangjul-maemil contained a considerable amount of rutin and quercitrin. Only small amount of quercitrin was detected in leaves, but it was not detected in stems. On the other hand, Clfa 39 leaves contained a considerable amount of rutin, quercetin and small amount of quercitrin, but quercitrin and quercetin were detected only in the stems of Clfa 39. Red and blue lights significantly decreased the contents of rutin, quercitrin, and quercetin in buckwheat plants as comparing with natural light condition. Rutin content in the flowers of Clfa 39 was increased under the red and blue light conditions.

Compositions and Pasting Properties of Fagopyrum esculentum and Fagopyrum tartaricum Endosperm Flour (일반메밀과 쓴메밀의 배유성분과 호화성질)

  • Kim, Jin-Ki;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.149-153
    • /
    • 2005
  • Composition and pasting properties of endosperms of one common buckwheat (CB) and two tartary buckwheats (TB) grown in China were investigated. No differences were observed in proximate composition and amino acid content between CB and TB. Content of rutin in TB was 22-fold higher than that of CB. Among minerals, iron, calcium, and magnesium contents were higher in TB than CB, whereas zinc, manganese, and phosphorus contents were similar, Pasting properties measured with Rapid visco Analyzer revealed TB-2 cultivar had highest peak viscosity, trough, and breakdown, followed by TB-1 and CB. Setback of TB was about 2.2-fold greater than that of CB. Significant differences in color were observed between CB and TB, and among TB cultivars.

Morphological Characterization of Fagopyrum esculentum Germplasm for Rutin and Quercetin Contents

  • Rauf, Muhammad;Choi, Yu Mi;Lee, Sukyeung;Hyun, Do Yoon;Lee, Myung-Chul;Oh, Sejong;Yoon, Hyemyeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.52-52
    • /
    • 2019
  • Buckwheat is well-known crop for containing a high contents of flavonoids that are effective in vascular disease. The current study was performed to estimate the influence of morphological characterization of Fagopyrum esculentum (ES) germplasm for seed's two major flavonoids contents: rutin and quercetin. We found that the red stem color, pale green leaf color, arrowhead leaf shape, white flower color, pale brown seed coat color, and egg-shaped seed were significantly associated with 77%, 56.7%, 83.7%, 98.7%, 70.8% and 74.5% germplasm, respectively. Overall, the rutin contents of ES germplasm ranged from 0.30 to 47.86 mg/100g dry weight (DW) and the quercetin contents ranged from 0 to 1.22 mg/100g DW. The rutin contents of germplasm possessing red stem color, pale green leaf color, arrowhead leaves, white flower color, pale brown seed coat color and egg-shaped seed ranged from 7.22 to 47.86 mg/100g DW. However, the quercetin contents of germplasm with red stem color and pale brown seed coat color ranged from 0 to 1.15 mg/100g DW, with pale green leaves ranged from 0 to 0.96 mg/100g, with arrowhead leaves and white flower ranged from 0 to 1.22 mg/100g and with egg-shaped seed ranged from 0.32 to 1.22 mg/100g DW. In PCA analysis, the first three principal components (PCs) showed Eigen value more than 1 and accounted for 51.70% of variation. For both higher contents of rutin and quercetin, the morphological evaluation in ES shows a tendency of red stem color, arrowhead leaves, pale green leaf color, white flower color, pale brown seed coat color and egg-shaped seed. From this information, we can assume the rutin and quercetin contents by the morphological characteristics of the germplasm. And It could be useful in improving the rutin and quercetin contents and selecting proper resources for cultivation in existing buckwheat cultivars.

  • PDF

Regulation of UVB-induced DRAM1-Autophagy protein in HDF Cells by the Vitexin (Vitexin에 의한 HDF 세포에서 UVB 유도 DRAM1-오토파지 단백질)

  • Byun, Seo-Jung;Kang, Sang-Mo;Cho, Young Jae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.201-210
    • /
    • 2021
  • This study was carried out to investigate the Fagopyrum esculentum (F. esculentum) extracts and vitexin are as the results of microarray, cell proliferation, cell wound recovery, cell cycle, microphage pattern and protein analysis for damage improvement caused by UVB-induced damage. Microarray results showed that UVB-induced increase in DRAM1, Atg2a and Atg13 genes was reduced in F. esculentum ethanol extract and vitexin. Cell proliferation, wound repair, cell cycle, and microphage patterns were improved in F. esculentum ethanol extract and vitexin, while buckwheat ethanol extract and vitexin decreased in both DRAM1, Beclin-1, and LC3 I/II in the vitexin treatment group and p-mTOR and survivin were all increased in protein analysis. It is thought that it can recover to normal and control autophagy, one of the causes of cell aging caused by UVB, to inhibit and regenerate cell death. F. esculentum ethanol extract and vitexin can be used as a functional cosmetic ingredient.

Advances of Self-incompatibility Genetics in Genus Fagopyrum

  • Woo Sun-Hee;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Probir Kumar Mittra;Swapan Kumar Roy;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.191-191
    • /
    • 2022
  • Heterostyly continues to fascinate evolutionary biologists interested in heredity, evolution, breeding, and adaptive function. Polymorphism demonstrates how simply inherited developmental changes in the location of plant sexual associations can have important consequences for population pollination and mating biology. In contrast to homozygous self incompatibility, only a small number of mating phenotypes can be maintained in the population because insect pollinators have limitations in achieving multiple segregation sites for pollen deposition. Field studies of pollen tube growth have shown that reciprocal style-stamen polymorphisms function to increase the capacity of insect-mediated cross-pollination. The genetic pattern of style morphs is well established in various taxa, but despite recent advances, the identity, number, and structure of the genes controlling the heteromorphic syndrome have been poorly elucidated. The phenomenon of heterostyly in buckwheat has been controlled by gene complex concentrate to S-locus. Homomorphic autogamous buckwheat strains were established by the interspecific hybridization. Backcrossing of this line to the common buckwheat (pin) and selecting homostylar progenies made it possible to introduce the self-compatible gene into common buckwheat. In the result, we obtained the BC9F2 generation, and defined the strong linkage between flower type and self-incompatibility by microscopic observation of pollen tube growth. This finding suggests that self-incompatibility character is not controlled by one gene. Moreover, we defined the strong linkage between flower type and self-incompatibility. It strongly supports the S supergene theory. Therefore, we have plan to elucidate the heterostyly self-incompatibility by using molecular genetics, proteome analysis and apply to exploitation of buckwheat improvement. In near future, the expression of heterozygous syndromes in genus Fagopyrum with single isolated heterozygous species may provide clues to early stages of polymorphic assembly and shed light on evolutionary models of heterozygous strains.

  • PDF

Optimization of Extraction Conditions to Obtain Functional Components from Buckwheat (Fagopyrum esculentum M.) Sprouts, using Response Surface Methodology (반응표면분석법에 의한 메밀(Fagopyrum esculentum M.) 새싹 기능성분의 추출 조건 최적화)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Bum-Keun;Jeong, Jin-Woong;Kim, Jong-Chan;Lee, Myung-Heon;Cho, Young-Sim;Jung, Hee-Yong
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.734-741
    • /
    • 2009
  • Response surface methodology (RSM) was used to optimize extraction conditions for functional components of buckwheat (Fagopyrum esculentum). A central composite design was applied to investigate the effects of three independent variables, namelyextraction temperature (X1), extraction time (X2), and ethanol concentration (X3), on responses including extraction yield (Y1), total phenolic content in the extract (Y2), $\alpha$-glucosidase inhibition activity (Y3), and acetylcholine esterase (ACE) inhibition activity (Y4). Data were analyzed using an expert design strategy and statistical software. The maximum yield was 24.95% (w/w) at $55.75^{\circ}C$ extraction temperature, 8.75 hextraction time, and 15.65% (v/v) ethanol. The maximum total phenolic yield was 222.45 mg/100 g under the conditions of $28.11^{\circ}C$ extraction temperature, 8.65 h extraction time, and 81.72% (v/v) ethanol. The maximum $\alpha$-glucosidase inhibition activity was 85.38% at $9.62^{\circ}C$, 7.86 h, and 57.58% (v/v) ethanol. The maximum ACE inhibition activity was 86.91% under extraction conditions of $10.12^{\circ}C$, 4.86 h, and 44.44% (v/v) ethanol. Based on superimposition of a four-dimensional RSM with respect to levels of total phenolics, $\alpha$-glucosidase inhibition activity, and ACE inhibition activity, obtained under various extraction conditions, the optimum ranges of conditions were an extraction temperature of $0-70^{\circ}C$, an extraction time of 2-8 h, and an ethanol concentration of 30-80% (v/v).

Antioxidative, Antimicrobial and Cytotoxic activities of Fagopyrum esculentum $M{\ddot{o}}ench$ Extract in Germinated Seeds (발아 메밀 추출물의 항산화.항균활성 및 세포독성)

  • Hwang, Eun-Ju;Lee, Sook-Young;Kwon, Su-Jung;Park, Min-Hee;Boo, Hee-Ock
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This research was conducted to investigate the possibilities of usage of germinated-buckwheat (Fagopyrum esculentum $M{\ddot{o}}ench$) by examining antioxidative, antimicrobial and cytotoxic effects of extracts from different germinated root length of buckwheat. Antioxidant activity $(RC_{50})$ was shown higher in extracts of non-germinated seed $(50.41\;{\mu}g/mL)$ and root length 10 mm $(80.57\;{\mu}g/mL)$, 2 mm $(93.77\;{\mu}g/mL)$, 5 mm $(107.09\;{\mu}g/mL)$ than BHT $(163.96\;{\mu}g/mL)$ as a synthetic antioxidant. In antimicrobial activity, non-germinated and germinated seeds were formed inhibitory zone against S. aureus $(4{\sim}10\;mm)$, P. aeruginosa $(2{\sim}9\;mm)$ at the concentrations of $10{\sim}40\;mg/mL$ but B. subtilis, E. coli and S. typhimurium were not apparent antimicrobial activity. Extracts of germinated seed also decreased their antimicrobial activity compared to non-germinated seed extract. In addition, the growth of Calu-6 was inhibited of both 5 mm root length germinated and non-germinated seeds $(800\;{\mu}g/mL)$ as 95.12% and 87.15%, respectively, but these did not show any influence on cytotoxic effect against MCF-7 and Caco-2 cell lines. Extracts of 2 mm and 5 mm germinated seeds were also inhibited against Calu-6 and SNU-601 cell lines.

Diversity of Arbuscular Mycorrhizal Fungi in Arable and Natural Soils in Korea

  • Eom, Ahn-Heum;Tae, Moon-Sung;Lee, Jae-Koo
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • The diversity of arbuscular mycorrhizal fungi (AM) was investigated in cultivated and natural fold sites or chungbuk, Korea. soils were collected from rhizosphere or Sorghum bicolor, Fagopyrum esculentum and Glycine max in cultivated sites, and of Miscanthus sinensis, Glycine soja and Lespedeza cuneata in natural sites. Total 20 species of Glomalean fungi were found in this study. Species richness, species diversity and density of AM fungi were significantly lower in the arable sites. While only AM fungal spores belong to Glomus and Acaulospora were found in arable fold sites, more diverse fungal spores including Gigasporaceae were found in natural grasslands. AM fungal spore composition did not significantly differ among crop plant species. Results suggest that the agricultural practices were significantly influenced on AM fungal community structures and mycorrhizal developments.